Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimi2 Structured version   Visualization version   GIF version

Theorem rlimi2 14452
 Description: Convergence at infinity of a function on the reals. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
rlimi.1 (𝜑 → ∀𝑧𝐴 𝐵𝑉)
rlimi.2 (𝜑𝑅 ∈ ℝ+)
rlimi.3 (𝜑 → (𝑧𝐴𝐵) ⇝𝑟 𝐶)
rlimi.4 (𝜑𝐷 ∈ ℝ)
Assertion
Ref Expression
rlimi2 (𝜑 → ∃𝑦 ∈ (𝐷[,)+∞)∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑅))
Distinct variable groups:   𝑦,𝑧,𝐴   𝑦,𝐵   𝑦,𝐶,𝑧   𝜑,𝑦   𝑦,𝑅,𝑧   𝑦,𝐷,𝑧   𝑧,𝑉
Allowed substitution hints:   𝜑(𝑧)   𝐵(𝑧)   𝑉(𝑦)

Proof of Theorem rlimi2
StepHypRef Expression
1 rlimi.1 . . 3 (𝜑 → ∀𝑧𝐴 𝐵𝑉)
2 rlimi.2 . . 3 (𝜑𝑅 ∈ ℝ+)
3 rlimi.3 . . 3 (𝜑 → (𝑧𝐴𝐵) ⇝𝑟 𝐶)
41, 2, 3rlimi 14451 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑅))
5 eqid 2770 . . . . . 6 (𝑧𝐴𝐵) = (𝑧𝐴𝐵)
65fnmpt 6160 . . . . 5 (∀𝑧𝐴 𝐵𝑉 → (𝑧𝐴𝐵) Fn 𝐴)
7 fndm 6130 . . . . 5 ((𝑧𝐴𝐵) Fn 𝐴 → dom (𝑧𝐴𝐵) = 𝐴)
81, 6, 73syl 18 . . . 4 (𝜑 → dom (𝑧𝐴𝐵) = 𝐴)
9 rlimss 14440 . . . . 5 ((𝑧𝐴𝐵) ⇝𝑟 𝐶 → dom (𝑧𝐴𝐵) ⊆ ℝ)
103, 9syl 17 . . . 4 (𝜑 → dom (𝑧𝐴𝐵) ⊆ ℝ)
118, 10eqsstr3d 3787 . . 3 (𝜑𝐴 ⊆ ℝ)
12 rlimi.4 . . 3 (𝜑𝐷 ∈ ℝ)
13 rexico 14300 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ) → (∃𝑦 ∈ (𝐷[,)+∞)∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑅) ↔ ∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑅)))
1411, 12, 13syl2anc 565 . 2 (𝜑 → (∃𝑦 ∈ (𝐷[,)+∞)∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑅) ↔ ∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑅)))
154, 14mpbird 247 1 (𝜑 → ∃𝑦 ∈ (𝐷[,)+∞)∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑅))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   = wceq 1630   ∈ wcel 2144  ∀wral 3060  ∃wrex 3061   ⊆ wss 3721   class class class wbr 4784   ↦ cmpt 4861  dom cdm 5249   Fn wfn 6026  ‘cfv 6031  (class class class)co 6792  ℝcr 10136  +∞cpnf 10272   < clt 10275   ≤ cle 10276   − cmin 10467  ℝ+crp 12034  [,)cico 12381  abscabs 14181   ⇝𝑟 crli 14423 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-pre-lttri 10211  ax-pre-lttrn 10212 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-po 5170  df-so 5171  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-er 7895  df-pm 8011  df-en 8109  df-dom 8110  df-sdom 8111  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-ico 12385  df-rlim 14427 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator