![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rlimdm | Structured version Visualization version GIF version |
Description: Two ways to express that a function has a limit. (The expression ( ⇝𝑟 ‘𝐹) is sometimes useful as a shorthand for "the unique limit of the function 𝐹"). (Contributed by Mario Carneiro, 8-May-2016.) |
Ref | Expression |
---|---|
rlimuni.1 | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
rlimuni.2 | ⊢ (𝜑 → sup(𝐴, ℝ*, < ) = +∞) |
Ref | Expression |
---|---|
rlimdm | ⊢ (𝜑 → (𝐹 ∈ dom ⇝𝑟 ↔ 𝐹 ⇝𝑟 ( ⇝𝑟 ‘𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldmg 5462 | . . . 4 ⊢ (𝐹 ∈ dom ⇝𝑟 → (𝐹 ∈ dom ⇝𝑟 ↔ ∃𝑥 𝐹 ⇝𝑟 𝑥)) | |
2 | 1 | ibi 256 | . . 3 ⊢ (𝐹 ∈ dom ⇝𝑟 → ∃𝑥 𝐹 ⇝𝑟 𝑥) |
3 | simpr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐹 ⇝𝑟 𝑥) → 𝐹 ⇝𝑟 𝑥) | |
4 | df-fv 6045 | . . . . . . 7 ⊢ ( ⇝𝑟 ‘𝐹) = (℩𝑦𝐹 ⇝𝑟 𝑦) | |
5 | vex 3331 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
6 | rlimuni.1 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
7 | 6 | adantr 472 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ (𝐹 ⇝𝑟 𝑥 ∧ 𝐹 ⇝𝑟 𝑦)) → 𝐹:𝐴⟶ℂ) |
8 | rlimuni.2 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → sup(𝐴, ℝ*, < ) = +∞) | |
9 | 8 | adantr 472 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ (𝐹 ⇝𝑟 𝑥 ∧ 𝐹 ⇝𝑟 𝑦)) → sup(𝐴, ℝ*, < ) = +∞) |
10 | simprr 813 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ (𝐹 ⇝𝑟 𝑥 ∧ 𝐹 ⇝𝑟 𝑦)) → 𝐹 ⇝𝑟 𝑦) | |
11 | simprl 811 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ (𝐹 ⇝𝑟 𝑥 ∧ 𝐹 ⇝𝑟 𝑦)) → 𝐹 ⇝𝑟 𝑥) | |
12 | 7, 9, 10, 11 | rlimuni 14451 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ (𝐹 ⇝𝑟 𝑥 ∧ 𝐹 ⇝𝑟 𝑦)) → 𝑦 = 𝑥) |
13 | 12 | expr 644 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝐹 ⇝𝑟 𝑥) → (𝐹 ⇝𝑟 𝑦 → 𝑦 = 𝑥)) |
14 | breq2 4796 | . . . . . . . . . . . 12 ⊢ (𝑦 = 𝑥 → (𝐹 ⇝𝑟 𝑦 ↔ 𝐹 ⇝𝑟 𝑥)) | |
15 | 3, 14 | syl5ibrcom 237 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝐹 ⇝𝑟 𝑥) → (𝑦 = 𝑥 → 𝐹 ⇝𝑟 𝑦)) |
16 | 13, 15 | impbid 202 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐹 ⇝𝑟 𝑥) → (𝐹 ⇝𝑟 𝑦 ↔ 𝑦 = 𝑥)) |
17 | 16 | adantr 472 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝐹 ⇝𝑟 𝑥) ∧ 𝑥 ∈ V) → (𝐹 ⇝𝑟 𝑦 ↔ 𝑦 = 𝑥)) |
18 | 17 | iota5 6020 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝐹 ⇝𝑟 𝑥) ∧ 𝑥 ∈ V) → (℩𝑦𝐹 ⇝𝑟 𝑦) = 𝑥) |
19 | 5, 18 | mpan2 709 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐹 ⇝𝑟 𝑥) → (℩𝑦𝐹 ⇝𝑟 𝑦) = 𝑥) |
20 | 4, 19 | syl5eq 2794 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐹 ⇝𝑟 𝑥) → ( ⇝𝑟 ‘𝐹) = 𝑥) |
21 | 3, 20 | breqtrrd 4820 | . . . . 5 ⊢ ((𝜑 ∧ 𝐹 ⇝𝑟 𝑥) → 𝐹 ⇝𝑟 ( ⇝𝑟 ‘𝐹)) |
22 | 21 | ex 449 | . . . 4 ⊢ (𝜑 → (𝐹 ⇝𝑟 𝑥 → 𝐹 ⇝𝑟 ( ⇝𝑟 ‘𝐹))) |
23 | 22 | exlimdv 1998 | . . 3 ⊢ (𝜑 → (∃𝑥 𝐹 ⇝𝑟 𝑥 → 𝐹 ⇝𝑟 ( ⇝𝑟 ‘𝐹))) |
24 | 2, 23 | syl5 34 | . 2 ⊢ (𝜑 → (𝐹 ∈ dom ⇝𝑟 → 𝐹 ⇝𝑟 ( ⇝𝑟 ‘𝐹))) |
25 | rlimrel 14394 | . . 3 ⊢ Rel ⇝𝑟 | |
26 | 25 | releldmi 5505 | . 2 ⊢ (𝐹 ⇝𝑟 ( ⇝𝑟 ‘𝐹) → 𝐹 ∈ dom ⇝𝑟 ) |
27 | 24, 26 | impbid1 215 | 1 ⊢ (𝜑 → (𝐹 ∈ dom ⇝𝑟 ↔ 𝐹 ⇝𝑟 ( ⇝𝑟 ‘𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1620 ∃wex 1841 ∈ wcel 2127 Vcvv 3328 class class class wbr 4792 dom cdm 5254 ℩cio 5998 ⟶wf 6033 ‘cfv 6037 supcsup 8499 ℂcc 10097 +∞cpnf 10234 ℝ*cxr 10236 < clt 10237 ⇝𝑟 crli 14386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 ax-cnex 10155 ax-resscn 10156 ax-1cn 10157 ax-icn 10158 ax-addcl 10159 ax-addrcl 10160 ax-mulcl 10161 ax-mulrcl 10162 ax-mulcom 10163 ax-addass 10164 ax-mulass 10165 ax-distr 10166 ax-i2m1 10167 ax-1ne0 10168 ax-1rid 10169 ax-rnegex 10170 ax-rrecex 10171 ax-cnre 10172 ax-pre-lttri 10173 ax-pre-lttrn 10174 ax-pre-ltadd 10175 ax-pre-mulgt0 10176 ax-pre-sup 10177 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-nel 3024 df-ral 3043 df-rex 3044 df-reu 3045 df-rmo 3046 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-pss 3719 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-tp 4314 df-op 4316 df-uni 4577 df-iun 4662 df-br 4793 df-opab 4853 df-mpt 4870 df-tr 4893 df-id 5162 df-eprel 5167 df-po 5175 df-so 5176 df-fr 5213 df-we 5215 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-pred 5829 df-ord 5875 df-on 5876 df-lim 5877 df-suc 5878 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-riota 6762 df-ov 6804 df-oprab 6805 df-mpt2 6806 df-om 7219 df-2nd 7322 df-wrecs 7564 df-recs 7625 df-rdg 7663 df-er 7899 df-pm 8014 df-en 8110 df-dom 8111 df-sdom 8112 df-sup 8501 df-pnf 10239 df-mnf 10240 df-xr 10241 df-ltxr 10242 df-le 10243 df-sub 10431 df-neg 10432 df-div 10848 df-nn 11184 df-2 11242 df-3 11243 df-n0 11456 df-z 11541 df-uz 11851 df-rp 11997 df-seq 12967 df-exp 13026 df-cj 14009 df-re 14010 df-im 14011 df-sqrt 14145 df-abs 14146 df-rlim 14390 |
This theorem is referenced by: caucvgrlem2 14575 caucvg 14579 dchrisum0lem3 25378 |
Copyright terms: Public domain | W3C validator |