MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimdm Structured version   Visualization version   GIF version

Theorem rlimdm 14232
Description: Two ways to express that a function has a limit. (The expression ( ⇝𝑟𝐹) is sometimes useful as a shorthand for "the unique limit of the function 𝐹"). (Contributed by Mario Carneiro, 8-May-2016.)
Hypotheses
Ref Expression
rlimuni.1 (𝜑𝐹:𝐴⟶ℂ)
rlimuni.2 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
Assertion
Ref Expression
rlimdm (𝜑 → (𝐹 ∈ dom ⇝𝑟𝐹𝑟 ( ⇝𝑟𝐹)))

Proof of Theorem rlimdm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldmg 5289 . . . 4 (𝐹 ∈ dom ⇝𝑟 → (𝐹 ∈ dom ⇝𝑟 ↔ ∃𝑥 𝐹𝑟 𝑥))
21ibi 256 . . 3 (𝐹 ∈ dom ⇝𝑟 → ∃𝑥 𝐹𝑟 𝑥)
3 simpr 477 . . . . . 6 ((𝜑𝐹𝑟 𝑥) → 𝐹𝑟 𝑥)
4 df-fv 5865 . . . . . . 7 ( ⇝𝑟𝐹) = (℩𝑦𝐹𝑟 𝑦)
5 vex 3193 . . . . . . . 8 𝑥 ∈ V
6 rlimuni.1 . . . . . . . . . . . . . 14 (𝜑𝐹:𝐴⟶ℂ)
76adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐹𝑟 𝑥𝐹𝑟 𝑦)) → 𝐹:𝐴⟶ℂ)
8 rlimuni.2 . . . . . . . . . . . . . 14 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
98adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐹𝑟 𝑥𝐹𝑟 𝑦)) → sup(𝐴, ℝ*, < ) = +∞)
10 simprr 795 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐹𝑟 𝑥𝐹𝑟 𝑦)) → 𝐹𝑟 𝑦)
11 simprl 793 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐹𝑟 𝑥𝐹𝑟 𝑦)) → 𝐹𝑟 𝑥)
127, 9, 10, 11rlimuni 14231 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐹𝑟 𝑥𝐹𝑟 𝑦)) → 𝑦 = 𝑥)
1312expr 642 . . . . . . . . . . 11 ((𝜑𝐹𝑟 𝑥) → (𝐹𝑟 𝑦𝑦 = 𝑥))
14 breq2 4627 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝐹𝑟 𝑦𝐹𝑟 𝑥))
153, 14syl5ibrcom 237 . . . . . . . . . . 11 ((𝜑𝐹𝑟 𝑥) → (𝑦 = 𝑥𝐹𝑟 𝑦))
1613, 15impbid 202 . . . . . . . . . 10 ((𝜑𝐹𝑟 𝑥) → (𝐹𝑟 𝑦𝑦 = 𝑥))
1716adantr 481 . . . . . . . . 9 (((𝜑𝐹𝑟 𝑥) ∧ 𝑥 ∈ V) → (𝐹𝑟 𝑦𝑦 = 𝑥))
1817iota5 5840 . . . . . . . 8 (((𝜑𝐹𝑟 𝑥) ∧ 𝑥 ∈ V) → (℩𝑦𝐹𝑟 𝑦) = 𝑥)
195, 18mpan2 706 . . . . . . 7 ((𝜑𝐹𝑟 𝑥) → (℩𝑦𝐹𝑟 𝑦) = 𝑥)
204, 19syl5eq 2667 . . . . . 6 ((𝜑𝐹𝑟 𝑥) → ( ⇝𝑟𝐹) = 𝑥)
213, 20breqtrrd 4651 . . . . 5 ((𝜑𝐹𝑟 𝑥) → 𝐹𝑟 ( ⇝𝑟𝐹))
2221ex 450 . . . 4 (𝜑 → (𝐹𝑟 𝑥𝐹𝑟 ( ⇝𝑟𝐹)))
2322exlimdv 1858 . . 3 (𝜑 → (∃𝑥 𝐹𝑟 𝑥𝐹𝑟 ( ⇝𝑟𝐹)))
242, 23syl5 34 . 2 (𝜑 → (𝐹 ∈ dom ⇝𝑟𝐹𝑟 ( ⇝𝑟𝐹)))
25 rlimrel 14174 . . 3 Rel ⇝𝑟
2625releldmi 5332 . 2 (𝐹𝑟 ( ⇝𝑟𝐹) → 𝐹 ∈ dom ⇝𝑟 )
2724, 26impbid1 215 1 (𝜑 → (𝐹 ∈ dom ⇝𝑟𝐹𝑟 ( ⇝𝑟𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wex 1701  wcel 1987  Vcvv 3190   class class class wbr 4623  dom cdm 5084  cio 5818  wf 5853  cfv 5857  supcsup 8306  cc 9894  +∞cpnf 10031  *cxr 10033   < clt 10034  𝑟 crli 14166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-er 7702  df-pm 7820  df-en 7916  df-dom 7917  df-sdom 7918  df-sup 8308  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-n0 11253  df-z 11338  df-uz 11648  df-rp 11793  df-seq 12758  df-exp 12817  df-cj 13789  df-re 13790  df-im 13791  df-sqrt 13925  df-abs 13926  df-rlim 14170
This theorem is referenced by:  caucvgrlem2  14355  caucvg  14359  dchrisum0lem3  25142
  Copyright terms: Public domain W3C validator