MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimdm Structured version   Visualization version   GIF version

Theorem rlimdm 14452
Description: Two ways to express that a function has a limit. (The expression ( ⇝𝑟𝐹) is sometimes useful as a shorthand for "the unique limit of the function 𝐹"). (Contributed by Mario Carneiro, 8-May-2016.)
Hypotheses
Ref Expression
rlimuni.1 (𝜑𝐹:𝐴⟶ℂ)
rlimuni.2 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
Assertion
Ref Expression
rlimdm (𝜑 → (𝐹 ∈ dom ⇝𝑟𝐹𝑟 ( ⇝𝑟𝐹)))

Proof of Theorem rlimdm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldmg 5462 . . . 4 (𝐹 ∈ dom ⇝𝑟 → (𝐹 ∈ dom ⇝𝑟 ↔ ∃𝑥 𝐹𝑟 𝑥))
21ibi 256 . . 3 (𝐹 ∈ dom ⇝𝑟 → ∃𝑥 𝐹𝑟 𝑥)
3 simpr 479 . . . . . 6 ((𝜑𝐹𝑟 𝑥) → 𝐹𝑟 𝑥)
4 df-fv 6045 . . . . . . 7 ( ⇝𝑟𝐹) = (℩𝑦𝐹𝑟 𝑦)
5 vex 3331 . . . . . . . 8 𝑥 ∈ V
6 rlimuni.1 . . . . . . . . . . . . . 14 (𝜑𝐹:𝐴⟶ℂ)
76adantr 472 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐹𝑟 𝑥𝐹𝑟 𝑦)) → 𝐹:𝐴⟶ℂ)
8 rlimuni.2 . . . . . . . . . . . . . 14 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
98adantr 472 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐹𝑟 𝑥𝐹𝑟 𝑦)) → sup(𝐴, ℝ*, < ) = +∞)
10 simprr 813 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐹𝑟 𝑥𝐹𝑟 𝑦)) → 𝐹𝑟 𝑦)
11 simprl 811 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐹𝑟 𝑥𝐹𝑟 𝑦)) → 𝐹𝑟 𝑥)
127, 9, 10, 11rlimuni 14451 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐹𝑟 𝑥𝐹𝑟 𝑦)) → 𝑦 = 𝑥)
1312expr 644 . . . . . . . . . . 11 ((𝜑𝐹𝑟 𝑥) → (𝐹𝑟 𝑦𝑦 = 𝑥))
14 breq2 4796 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝐹𝑟 𝑦𝐹𝑟 𝑥))
153, 14syl5ibrcom 237 . . . . . . . . . . 11 ((𝜑𝐹𝑟 𝑥) → (𝑦 = 𝑥𝐹𝑟 𝑦))
1613, 15impbid 202 . . . . . . . . . 10 ((𝜑𝐹𝑟 𝑥) → (𝐹𝑟 𝑦𝑦 = 𝑥))
1716adantr 472 . . . . . . . . 9 (((𝜑𝐹𝑟 𝑥) ∧ 𝑥 ∈ V) → (𝐹𝑟 𝑦𝑦 = 𝑥))
1817iota5 6020 . . . . . . . 8 (((𝜑𝐹𝑟 𝑥) ∧ 𝑥 ∈ V) → (℩𝑦𝐹𝑟 𝑦) = 𝑥)
195, 18mpan2 709 . . . . . . 7 ((𝜑𝐹𝑟 𝑥) → (℩𝑦𝐹𝑟 𝑦) = 𝑥)
204, 19syl5eq 2794 . . . . . 6 ((𝜑𝐹𝑟 𝑥) → ( ⇝𝑟𝐹) = 𝑥)
213, 20breqtrrd 4820 . . . . 5 ((𝜑𝐹𝑟 𝑥) → 𝐹𝑟 ( ⇝𝑟𝐹))
2221ex 449 . . . 4 (𝜑 → (𝐹𝑟 𝑥𝐹𝑟 ( ⇝𝑟𝐹)))
2322exlimdv 1998 . . 3 (𝜑 → (∃𝑥 𝐹𝑟 𝑥𝐹𝑟 ( ⇝𝑟𝐹)))
242, 23syl5 34 . 2 (𝜑 → (𝐹 ∈ dom ⇝𝑟𝐹𝑟 ( ⇝𝑟𝐹)))
25 rlimrel 14394 . . 3 Rel ⇝𝑟
2625releldmi 5505 . 2 (𝐹𝑟 ( ⇝𝑟𝐹) → 𝐹 ∈ dom ⇝𝑟 )
2724, 26impbid1 215 1 (𝜑 → (𝐹 ∈ dom ⇝𝑟𝐹𝑟 ( ⇝𝑟𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1620  wex 1841  wcel 2127  Vcvv 3328   class class class wbr 4792  dom cdm 5254  cio 5998  wf 6033  cfv 6037  supcsup 8499  cc 10097  +∞cpnf 10234  *cxr 10236   < clt 10237  𝑟 crli 14386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176  ax-pre-sup 10177
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rmo 3046  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-om 7219  df-2nd 7322  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-er 7899  df-pm 8014  df-en 8110  df-dom 8111  df-sdom 8112  df-sup 8501  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-div 10848  df-nn 11184  df-2 11242  df-3 11243  df-n0 11456  df-z 11541  df-uz 11851  df-rp 11997  df-seq 12967  df-exp 13026  df-cj 14009  df-re 14010  df-im 14011  df-sqrt 14145  df-abs 14146  df-rlim 14390
This theorem is referenced by:  caucvgrlem2  14575  caucvg  14579  dchrisum0lem3  25378
  Copyright terms: Public domain W3C validator