Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimclim1 Structured version   Visualization version   GIF version

Theorem rlimclim1 14475
 Description: Forward direction of rlimclim 14476. (Contributed by Mario Carneiro, 16-Sep-2014.)
Hypotheses
Ref Expression
rlimclim1.1 𝑍 = (ℤ𝑀)
rlimclim1.2 (𝜑𝑀 ∈ ℤ)
rlimclim1.3 (𝜑𝐹𝑟 𝐴)
rlimclim1.4 (𝜑𝑍 ⊆ dom 𝐹)
Assertion
Ref Expression
rlimclim1 (𝜑𝐹𝐴)

Proof of Theorem rlimclim1
Dummy variables 𝑗 𝑘 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6362 . . . . . . 7 (𝐹𝑤) ∈ V
21rgenw 3062 . . . . . 6 𝑤 ∈ dom 𝐹(𝐹𝑤) ∈ V
32a1i 11 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → ∀𝑤 ∈ dom 𝐹(𝐹𝑤) ∈ V)
4 simpr 479 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
5 rlimclim1.3 . . . . . . . . 9 (𝜑𝐹𝑟 𝐴)
6 rlimf 14431 . . . . . . . . 9 (𝐹𝑟 𝐴𝐹:dom 𝐹⟶ℂ)
75, 6syl 17 . . . . . . . 8 (𝜑𝐹:dom 𝐹⟶ℂ)
87adantr 472 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → 𝐹:dom 𝐹⟶ℂ)
98feqmptd 6411 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → 𝐹 = (𝑤 ∈ dom 𝐹 ↦ (𝐹𝑤)))
105adantr 472 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → 𝐹𝑟 𝐴)
119, 10eqbrtrrd 4828 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → (𝑤 ∈ dom 𝐹 ↦ (𝐹𝑤)) ⇝𝑟 𝐴)
123, 4, 11rlimi 14443 . . . 4 ((𝜑𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))
13 rlimclim1.2 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
1413ad2antrr 764 . . . . . . 7 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) → 𝑀 ∈ ℤ)
15 flcl 12790 . . . . . . . . . 10 (𝑧 ∈ ℝ → (⌊‘𝑧) ∈ ℤ)
1615peano2zd 11677 . . . . . . . . 9 (𝑧 ∈ ℝ → ((⌊‘𝑧) + 1) ∈ ℤ)
1716ad2antrl 766 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) → ((⌊‘𝑧) + 1) ∈ ℤ)
1817, 14ifcld 4275 . . . . . . 7 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) → if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ∈ ℤ)
1914zred 11674 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) → 𝑀 ∈ ℝ)
2017zred 11674 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) → ((⌊‘𝑧) + 1) ∈ ℝ)
21 max1 12209 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ ((⌊‘𝑧) + 1) ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))
2219, 20, 21syl2anc 696 . . . . . . 7 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))
23 eluz2 11885 . . . . . . 7 (if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ∈ ℤ ∧ 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀)))
2414, 18, 22, 23syl3anbrc 1429 . . . . . 6 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) → if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ∈ (ℤ𝑀))
25 rlimclim1.1 . . . . . 6 𝑍 = (ℤ𝑀)
2624, 25syl6eleqr 2850 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) → if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ∈ 𝑍)
27 simplrl 819 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑧 ∈ ℝ)
2816zred 11674 . . . . . . . . . 10 (𝑧 ∈ ℝ → ((⌊‘𝑧) + 1) ∈ ℝ)
2927, 28syl 17 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → ((⌊‘𝑧) + 1) ∈ ℝ)
3019adantr 472 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑀 ∈ ℝ)
3129, 30ifcld 4275 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ∈ ℝ)
32 eluzelre 11890 . . . . . . . . 9 (𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀)) → 𝑘 ∈ ℝ)
3332adantl 473 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑘 ∈ ℝ)
34 fllep1 12796 . . . . . . . . . 10 (𝑧 ∈ ℝ → 𝑧 ≤ ((⌊‘𝑧) + 1))
3527, 34syl 17 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑧 ≤ ((⌊‘𝑧) + 1))
36 max2 12211 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ ((⌊‘𝑧) + 1) ∈ ℝ) → ((⌊‘𝑧) + 1) ≤ if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))
3730, 29, 36syl2anc 696 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → ((⌊‘𝑧) + 1) ≤ if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))
3827, 29, 31, 35, 37letrd 10386 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑧 ≤ if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))
39 eluzle 11892 . . . . . . . . 9 (𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀)) → if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ≤ 𝑘)
4039adantl 473 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ≤ 𝑘)
4127, 31, 33, 38, 40letrd 10386 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑧𝑘)
42 breq2 4808 . . . . . . . . 9 (𝑤 = 𝑘 → (𝑧𝑤𝑧𝑘))
43 fveq2 6352 . . . . . . . . . . . 12 (𝑤 = 𝑘 → (𝐹𝑤) = (𝐹𝑘))
4443oveq1d 6828 . . . . . . . . . . 11 (𝑤 = 𝑘 → ((𝐹𝑤) − 𝐴) = ((𝐹𝑘) − 𝐴))
4544fveq2d 6356 . . . . . . . . . 10 (𝑤 = 𝑘 → (abs‘((𝐹𝑤) − 𝐴)) = (abs‘((𝐹𝑘) − 𝐴)))
4645breq1d 4814 . . . . . . . . 9 (𝑤 = 𝑘 → ((abs‘((𝐹𝑤) − 𝐴)) < 𝑦 ↔ (abs‘((𝐹𝑘) − 𝐴)) < 𝑦))
4742, 46imbi12d 333 . . . . . . . 8 (𝑤 = 𝑘 → ((𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦) ↔ (𝑧𝑘 → (abs‘((𝐹𝑘) − 𝐴)) < 𝑦)))
48 simplrr 820 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))
49 rlimclim1.4 . . . . . . . . . 10 (𝜑𝑍 ⊆ dom 𝐹)
5049ad3antrrr 768 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑍 ⊆ dom 𝐹)
5125uztrn2 11897 . . . . . . . . . 10 ((if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ∈ 𝑍𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑘𝑍)
5226, 51sylan 489 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑘𝑍)
5350, 52sseldd 3745 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑘 ∈ dom 𝐹)
5447, 48, 53rspcdva 3455 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → (𝑧𝑘 → (abs‘((𝐹𝑘) − 𝐴)) < 𝑦))
5541, 54mpd 15 . . . . . 6 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → (abs‘((𝐹𝑘) − 𝐴)) < 𝑦)
5655ralrimiva 3104 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) → ∀𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)
57 fveq2 6352 . . . . . . 7 (𝑗 = if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) → (ℤ𝑗) = (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀)))
5857raleqdv 3283 . . . . . 6 (𝑗 = if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) → (∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦 ↔ ∀𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))(abs‘((𝐹𝑘) − 𝐴)) < 𝑦))
5958rspcev 3449 . . . . 5 ((if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))(abs‘((𝐹𝑘) − 𝐴)) < 𝑦) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)
6026, 56, 59syl2anc 696 . . . 4 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)
6112, 60rexlimddv 3173 . . 3 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)
6261ralrimiva 3104 . 2 (𝜑 → ∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)
63 rlimpm 14430 . . . 4 (𝐹𝑟 𝐴𝐹 ∈ (ℂ ↑pm ℝ))
645, 63syl 17 . . 3 (𝜑𝐹 ∈ (ℂ ↑pm ℝ))
65 eqidd 2761 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
66 rlimcl 14433 . . . 4 (𝐹𝑟 𝐴𝐴 ∈ ℂ)
675, 66syl 17 . . 3 (𝜑𝐴 ∈ ℂ)
6849sselda 3744 . . . 4 ((𝜑𝑘𝑍) → 𝑘 ∈ dom 𝐹)
697ffvelrnda 6522 . . . 4 ((𝜑𝑘 ∈ dom 𝐹) → (𝐹𝑘) ∈ ℂ)
7068, 69syldan 488 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
7125, 13, 64, 65, 67, 70clim2c 14435 . 2 (𝜑 → (𝐹𝐴 ↔ ∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦))
7262, 71mpbird 247 1 (𝜑𝐹𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1632   ∈ wcel 2139  ∀wral 3050  ∃wrex 3051  Vcvv 3340   ⊆ wss 3715  ifcif 4230   class class class wbr 4804   ↦ cmpt 4881  dom cdm 5266  ⟶wf 6045  ‘cfv 6049  (class class class)co 6813   ↑pm cpm 8024  ℂcc 10126  ℝcr 10127  1c1 10129   + caddc 10131   < clt 10266   ≤ cle 10267   − cmin 10458  ℤcz 11569  ℤ≥cuz 11879  ℝ+crp 12025  ⌊cfl 12785  abscabs 14173   ⇝ cli 14414   ⇝𝑟 crli 14415 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-pm 8026  df-en 8122  df-dom 8123  df-sdom 8124  df-sup 8513  df-inf 8514  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-n0 11485  df-z 11570  df-uz 11880  df-fl 12787  df-clim 14418  df-rlim 14419 This theorem is referenced by:  rlimclim  14476  dchrisumlema  25376
 Copyright terms: Public domain W3C validator