Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimcld2 Structured version   Visualization version   GIF version

Theorem rlimcld2 14529
 Description: If 𝐷 is a closed set in the topology of the complex numbers (stated here in basic form), and all the elements of the sequence lie in 𝐷, then the limit of the sequence also lies in 𝐷. (Contributed by Mario Carneiro, 10-May-2016.)
Hypotheses
Ref Expression
rlimcld2.1 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
rlimcld2.2 (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐶)
rlimcld2.3 (𝜑𝐷 ⊆ ℂ)
rlimcld2.4 ((𝜑𝑦 ∈ (ℂ ∖ 𝐷)) → 𝑅 ∈ ℝ+)
rlimcld2.5 (((𝜑𝑦 ∈ (ℂ ∖ 𝐷)) ∧ 𝑧𝐷) → 𝑅 ≤ (abs‘(𝑧𝑦)))
rlimcld2.6 ((𝜑𝑥𝐴) → 𝐵𝐷)
Assertion
Ref Expression
rlimcld2 (𝜑𝐶𝐷)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑦,𝐵,𝑧   𝑥,𝐶,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐷,𝑦,𝑧   𝑥,𝑅,𝑧
Allowed substitution hints:   𝐵(𝑥)   𝑅(𝑦)

Proof of Theorem rlimcld2
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 rlimcld2.6 . . . . 5 ((𝜑𝑥𝐴) → 𝐵𝐷)
21ralrimiva 3105 . . . 4 (𝜑 → ∀𝑥𝐴 𝐵𝐷)
32adantr 472 . . 3 ((𝜑 ∧ ¬ 𝐶𝐷) → ∀𝑥𝐴 𝐵𝐷)
4 rlimcld2.2 . . . . . . 7 (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐶)
54adantr 472 . . . . . 6 ((𝜑 ∧ ¬ 𝐶𝐷) → (𝑥𝐴𝐵) ⇝𝑟 𝐶)
6 rlimcl 14454 . . . . . 6 ((𝑥𝐴𝐵) ⇝𝑟 𝐶𝐶 ∈ ℂ)
75, 6syl 17 . . . . 5 ((𝜑 ∧ ¬ 𝐶𝐷) → 𝐶 ∈ ℂ)
8 simpr 479 . . . . 5 ((𝜑 ∧ ¬ 𝐶𝐷) → ¬ 𝐶𝐷)
97, 8eldifd 3727 . . . 4 ((𝜑 ∧ ¬ 𝐶𝐷) → 𝐶 ∈ (ℂ ∖ 𝐷))
10 rlimcld2.4 . . . . . 6 ((𝜑𝑦 ∈ (ℂ ∖ 𝐷)) → 𝑅 ∈ ℝ+)
1110ralrimiva 3105 . . . . 5 (𝜑 → ∀𝑦 ∈ (ℂ ∖ 𝐷)𝑅 ∈ ℝ+)
1211adantr 472 . . . 4 ((𝜑 ∧ ¬ 𝐶𝐷) → ∀𝑦 ∈ (ℂ ∖ 𝐷)𝑅 ∈ ℝ+)
13 nfcsb1v 3691 . . . . . 6 𝑦𝐶 / 𝑦𝑅
1413nfel1 2918 . . . . 5 𝑦𝐶 / 𝑦𝑅 ∈ ℝ+
15 csbeq1a 3684 . . . . . 6 (𝑦 = 𝐶𝑅 = 𝐶 / 𝑦𝑅)
1615eleq1d 2825 . . . . 5 (𝑦 = 𝐶 → (𝑅 ∈ ℝ+𝐶 / 𝑦𝑅 ∈ ℝ+))
1714, 16rspc 3444 . . . 4 (𝐶 ∈ (ℂ ∖ 𝐷) → (∀𝑦 ∈ (ℂ ∖ 𝐷)𝑅 ∈ ℝ+𝐶 / 𝑦𝑅 ∈ ℝ+))
189, 12, 17sylc 65 . . 3 ((𝜑 ∧ ¬ 𝐶𝐷) → 𝐶 / 𝑦𝑅 ∈ ℝ+)
193, 18, 5rlimi 14464 . 2 ((𝜑 ∧ ¬ 𝐶𝐷) → ∃𝑟 ∈ ℝ ∀𝑥𝐴 (𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅))
201adantlr 753 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑥𝐴) → 𝐵𝐷)
2120adantlr 753 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵𝐷)
22 rlimcld2.5 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (ℂ ∖ 𝐷)) ∧ 𝑧𝐷) → 𝑅 ≤ (abs‘(𝑧𝑦)))
2322ralrimiva 3105 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (ℂ ∖ 𝐷)) → ∀𝑧𝐷 𝑅 ≤ (abs‘(𝑧𝑦)))
2423ralrimiva 3105 . . . . . . . . . . 11 (𝜑 → ∀𝑦 ∈ (ℂ ∖ 𝐷)∀𝑧𝐷 𝑅 ≤ (abs‘(𝑧𝑦)))
2524adantr 472 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐶𝐷) → ∀𝑦 ∈ (ℂ ∖ 𝐷)∀𝑧𝐷 𝑅 ≤ (abs‘(𝑧𝑦)))
26 nfcv 2903 . . . . . . . . . . . 12 𝑦𝐷
27 nfcv 2903 . . . . . . . . . . . . 13 𝑦
28 nfcv 2903 . . . . . . . . . . . . 13 𝑦(abs‘(𝑧𝐶))
2913, 27, 28nfbr 4852 . . . . . . . . . . . 12 𝑦𝐶 / 𝑦𝑅 ≤ (abs‘(𝑧𝐶))
3026, 29nfral 3084 . . . . . . . . . . 11 𝑦𝑧𝐷 𝐶 / 𝑦𝑅 ≤ (abs‘(𝑧𝐶))
31 oveq2 6823 . . . . . . . . . . . . . 14 (𝑦 = 𝐶 → (𝑧𝑦) = (𝑧𝐶))
3231fveq2d 6358 . . . . . . . . . . . . 13 (𝑦 = 𝐶 → (abs‘(𝑧𝑦)) = (abs‘(𝑧𝐶)))
3315, 32breq12d 4818 . . . . . . . . . . . 12 (𝑦 = 𝐶 → (𝑅 ≤ (abs‘(𝑧𝑦)) ↔ 𝐶 / 𝑦𝑅 ≤ (abs‘(𝑧𝐶))))
3433ralbidv 3125 . . . . . . . . . . 11 (𝑦 = 𝐶 → (∀𝑧𝐷 𝑅 ≤ (abs‘(𝑧𝑦)) ↔ ∀𝑧𝐷 𝐶 / 𝑦𝑅 ≤ (abs‘(𝑧𝐶))))
3530, 34rspc 3444 . . . . . . . . . 10 (𝐶 ∈ (ℂ ∖ 𝐷) → (∀𝑦 ∈ (ℂ ∖ 𝐷)∀𝑧𝐷 𝑅 ≤ (abs‘(𝑧𝑦)) → ∀𝑧𝐷 𝐶 / 𝑦𝑅 ≤ (abs‘(𝑧𝐶))))
369, 25, 35sylc 65 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐶𝐷) → ∀𝑧𝐷 𝐶 / 𝑦𝑅 ≤ (abs‘(𝑧𝐶)))
3736ad2antrr 764 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → ∀𝑧𝐷 𝐶 / 𝑦𝑅 ≤ (abs‘(𝑧𝐶)))
38 oveq1 6822 . . . . . . . . . . 11 (𝑧 = 𝐵 → (𝑧𝐶) = (𝐵𝐶))
3938fveq2d 6358 . . . . . . . . . 10 (𝑧 = 𝐵 → (abs‘(𝑧𝐶)) = (abs‘(𝐵𝐶)))
4039breq2d 4817 . . . . . . . . 9 (𝑧 = 𝐵 → (𝐶 / 𝑦𝑅 ≤ (abs‘(𝑧𝐶)) ↔ 𝐶 / 𝑦𝑅 ≤ (abs‘(𝐵𝐶))))
4140rspcv 3446 . . . . . . . 8 (𝐵𝐷 → (∀𝑧𝐷 𝐶 / 𝑦𝑅 ≤ (abs‘(𝑧𝐶)) → 𝐶 / 𝑦𝑅 ≤ (abs‘(𝐵𝐶))))
4221, 37, 41sylc 65 . . . . . . 7 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → 𝐶 / 𝑦𝑅 ≤ (abs‘(𝐵𝐶)))
4318ad2antrr 764 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → 𝐶 / 𝑦𝑅 ∈ ℝ+)
4443rpred 12086 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → 𝐶 / 𝑦𝑅 ∈ ℝ)
45 rlimcld2.3 . . . . . . . . . . . 12 (𝜑𝐷 ⊆ ℂ)
4645ad3antrrr 768 . . . . . . . . . . 11 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → 𝐷 ⊆ ℂ)
4746, 21sseldd 3746 . . . . . . . . . 10 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℂ)
487ad2antrr 764 . . . . . . . . . 10 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → 𝐶 ∈ ℂ)
4947, 48subcld 10605 . . . . . . . . 9 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → (𝐵𝐶) ∈ ℂ)
5049abscld 14395 . . . . . . . 8 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → (abs‘(𝐵𝐶)) ∈ ℝ)
5144, 50lenltd 10396 . . . . . . 7 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → (𝐶 / 𝑦𝑅 ≤ (abs‘(𝐵𝐶)) ↔ ¬ (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅))
5242, 51mpbid 222 . . . . . 6 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → ¬ (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅)
53 id 22 . . . . . . 7 ((𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅) → (𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅))
5453imp 444 . . . . . 6 (((𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅) ∧ 𝑟𝑥) → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅)
5552, 54nsyl 135 . . . . 5 ((((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) ∧ 𝑥𝐴) → ¬ ((𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅) ∧ 𝑟𝑥))
5655nrexdv 3140 . . . 4 (((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) → ¬ ∃𝑥𝐴 ((𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅) ∧ 𝑟𝑥))
57 rlimcld2.1 . . . . . . . 8 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
58 eqid 2761 . . . . . . . . . . . 12 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
5958, 1dmmptd 6186 . . . . . . . . . . 11 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
60 rlimss 14453 . . . . . . . . . . . 12 ((𝑥𝐴𝐵) ⇝𝑟 𝐶 → dom (𝑥𝐴𝐵) ⊆ ℝ)
614, 60syl 17 . . . . . . . . . . 11 (𝜑 → dom (𝑥𝐴𝐵) ⊆ ℝ)
6259, 61eqsstr3d 3782 . . . . . . . . . 10 (𝜑𝐴 ⊆ ℝ)
63 ressxr 10296 . . . . . . . . . 10 ℝ ⊆ ℝ*
6462, 63syl6ss 3757 . . . . . . . . 9 (𝜑𝐴 ⊆ ℝ*)
65 supxrunb1 12363 . . . . . . . . 9 (𝐴 ⊆ ℝ* → (∀𝑟 ∈ ℝ ∃𝑥𝐴 𝑟𝑥 ↔ sup(𝐴, ℝ*, < ) = +∞))
6664, 65syl 17 . . . . . . . 8 (𝜑 → (∀𝑟 ∈ ℝ ∃𝑥𝐴 𝑟𝑥 ↔ sup(𝐴, ℝ*, < ) = +∞))
6757, 66mpbird 247 . . . . . . 7 (𝜑 → ∀𝑟 ∈ ℝ ∃𝑥𝐴 𝑟𝑥)
6867adantr 472 . . . . . 6 ((𝜑 ∧ ¬ 𝐶𝐷) → ∀𝑟 ∈ ℝ ∃𝑥𝐴 𝑟𝑥)
6968r19.21bi 3071 . . . . 5 (((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) → ∃𝑥𝐴 𝑟𝑥)
70 r19.29 3211 . . . . . 6 ((∀𝑥𝐴 (𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅) ∧ ∃𝑥𝐴 𝑟𝑥) → ∃𝑥𝐴 ((𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅) ∧ 𝑟𝑥))
7170expcom 450 . . . . 5 (∃𝑥𝐴 𝑟𝑥 → (∀𝑥𝐴 (𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅) → ∃𝑥𝐴 ((𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅) ∧ 𝑟𝑥)))
7269, 71syl 17 . . . 4 (((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) → (∀𝑥𝐴 (𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅) → ∃𝑥𝐴 ((𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅) ∧ 𝑟𝑥)))
7356, 72mtod 189 . . 3 (((𝜑 ∧ ¬ 𝐶𝐷) ∧ 𝑟 ∈ ℝ) → ¬ ∀𝑥𝐴 (𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅))
7473nrexdv 3140 . 2 ((𝜑 ∧ ¬ 𝐶𝐷) → ¬ ∃𝑟 ∈ ℝ ∀𝑥𝐴 (𝑟𝑥 → (abs‘(𝐵𝐶)) < 𝐶 / 𝑦𝑅))
7519, 74condan 870 1 (𝜑𝐶𝐷)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1632   ∈ wcel 2140  ∀wral 3051  ∃wrex 3052  ⦋csb 3675   ∖ cdif 3713   ⊆ wss 3716   class class class wbr 4805   ↦ cmpt 4882  dom cdm 5267  ‘cfv 6050  (class class class)co 6815  supcsup 8514  ℂcc 10147  ℝcr 10148  +∞cpnf 10284  ℝ*cxr 10286   < clt 10287   ≤ cle 10288   − cmin 10479  ℝ+crp 12046  abscabs 14194   ⇝𝑟 crli 14436 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226  ax-pre-sup 10227 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-2nd 7336  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-er 7914  df-pm 8029  df-en 8125  df-dom 8126  df-sdom 8127  df-sup 8516  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-div 10898  df-nn 11234  df-2 11292  df-3 11293  df-n0 11506  df-z 11591  df-uz 11901  df-rp 12047  df-seq 13017  df-exp 13076  df-cj 14059  df-re 14060  df-im 14061  df-sqrt 14195  df-abs 14196  df-rlim 14440 This theorem is referenced by:  rlimrege0  14530  rlimrecl  14531
 Copyright terms: Public domain W3C validator