MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimabs Structured version   Visualization version   GIF version

Theorem rlimabs 14538
Description: Limit of the absolute value of a sequence. Proposition 12-2.4(c) of [Gleason] p. 172. (Contributed by Mario Carneiro, 10-May-2016.)
Hypotheses
Ref Expression
rlimabs.1 ((𝜑𝑘𝐴) → 𝐵𝑉)
rlimabs.2 (𝜑 → (𝑘𝐴𝐵) ⇝𝑟 𝐶)
Assertion
Ref Expression
rlimabs (𝜑 → (𝑘𝐴 ↦ (abs‘𝐵)) ⇝𝑟 (abs‘𝐶))
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)   𝑉(𝑘)

Proof of Theorem rlimabs
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimabs.1 . . 3 ((𝜑𝑘𝐴) → 𝐵𝑉)
2 rlimabs.2 . . 3 (𝜑 → (𝑘𝐴𝐵) ⇝𝑟 𝐶)
31, 2rlimmptrcl 14537 . 2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
4 rlimcl 14433 . . 3 ((𝑘𝐴𝐵) ⇝𝑟 𝐶𝐶 ∈ ℂ)
52, 4syl 17 . 2 (𝜑𝐶 ∈ ℂ)
6 absf 14276 . . . 4 abs:ℂ⟶ℝ
7 ax-resscn 10185 . . . 4 ℝ ⊆ ℂ
8 fss 6217 . . . 4 ((abs:ℂ⟶ℝ ∧ ℝ ⊆ ℂ) → abs:ℂ⟶ℂ)
96, 7, 8mp2an 710 . . 3 abs:ℂ⟶ℂ
109a1i 11 . 2 (𝜑 → abs:ℂ⟶ℂ)
11 abscn2 14528 . . 3 ((𝐶 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℂ ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((abs‘𝑧) − (abs‘𝐶))) < 𝑥))
125, 11sylan 489 . 2 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℂ ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((abs‘𝑧) − (abs‘𝐶))) < 𝑥))
133, 5, 2, 10, 12rlimcn1b 14519 1 (𝜑 → (𝑘𝐴 ↦ (abs‘𝐵)) ⇝𝑟 (abs‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wcel 2139  wral 3050  wrex 3051  wss 3715   class class class wbr 4804  cmpt 4881  wf 6045  cfv 6049  (class class class)co 6813  cc 10126  cr 10127   < clt 10266  cmin 10458  +crp 12025  abscabs 14173  𝑟 crli 14415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-pm 8026  df-en 8122  df-dom 8123  df-sdom 8124  df-sup 8513  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-n0 11485  df-z 11570  df-uz 11880  df-rp 12026  df-seq 12996  df-exp 13055  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-rlim 14419
This theorem is referenced by:  dvfsumrlim2  23994
  Copyright terms: Public domain W3C validator