![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > risefacval2 | Structured version Visualization version GIF version |
Description: One-based value of rising factorial. (Contributed by Scott Fenton, 15-Jan-2018.) |
Ref | Expression |
---|---|
risefacval2 | ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 RiseFac 𝑁) = ∏𝑘 ∈ (1...𝑁)(𝐴 + (𝑘 − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | risefacval 14958 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 RiseFac 𝑁) = ∏𝑛 ∈ (0...(𝑁 − 1))(𝐴 + 𝑛)) | |
2 | 1zzd 11620 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 1 ∈ ℤ) | |
3 | 0zd 11601 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 0 ∈ ℤ) | |
4 | nn0z 11612 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
5 | peano2zm 11632 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (𝑁 − 1) ∈ ℤ) |
7 | 6 | adantl 473 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑁 − 1) ∈ ℤ) |
8 | simpl 474 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℂ) | |
9 | elfznn0 12646 | . . . . 5 ⊢ (𝑛 ∈ (0...(𝑁 − 1)) → 𝑛 ∈ ℕ0) | |
10 | 9 | nn0cnd 11565 | . . . 4 ⊢ (𝑛 ∈ (0...(𝑁 − 1)) → 𝑛 ∈ ℂ) |
11 | addcl 10230 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (𝐴 + 𝑛) ∈ ℂ) | |
12 | 8, 10, 11 | syl2an 495 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ (0...(𝑁 − 1))) → (𝐴 + 𝑛) ∈ ℂ) |
13 | oveq2 6822 | . . 3 ⊢ (𝑛 = (𝑘 − 1) → (𝐴 + 𝑛) = (𝐴 + (𝑘 − 1))) | |
14 | 2, 3, 7, 12, 13 | fprodshft 14925 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ∏𝑛 ∈ (0...(𝑁 − 1))(𝐴 + 𝑛) = ∏𝑘 ∈ ((0 + 1)...((𝑁 − 1) + 1))(𝐴 + (𝑘 − 1))) |
15 | 0p1e1 11344 | . . . . 5 ⊢ (0 + 1) = 1 | |
16 | 15 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (0 + 1) = 1) |
17 | nn0cn 11514 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ) | |
18 | 1cnd 10268 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 1 ∈ ℂ) | |
19 | 17, 18 | npcand 10608 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 − 1) + 1) = 𝑁) |
20 | 19 | adantl 473 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝑁 − 1) + 1) = 𝑁) |
21 | 16, 20 | oveq12d 6832 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((0 + 1)...((𝑁 − 1) + 1)) = (1...𝑁)) |
22 | 21 | prodeq1d 14870 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ∏𝑘 ∈ ((0 + 1)...((𝑁 − 1) + 1))(𝐴 + (𝑘 − 1)) = ∏𝑘 ∈ (1...𝑁)(𝐴 + (𝑘 − 1))) |
23 | 1, 14, 22 | 3eqtrd 2798 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 RiseFac 𝑁) = ∏𝑘 ∈ (1...𝑁)(𝐴 + (𝑘 − 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 (class class class)co 6814 ℂcc 10146 0cc0 10148 1c1 10149 + caddc 10151 − cmin 10478 ℕ0cn0 11504 ℤcz 11589 ...cfz 12539 ∏cprod 14854 RiseFac crisefac 14955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-inf2 8713 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 ax-pre-sup 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-se 5226 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-isom 6058 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-oadd 7734 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-sup 8515 df-oi 8582 df-card 8975 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-div 10897 df-nn 11233 df-2 11291 df-3 11292 df-n0 11505 df-z 11590 df-uz 11900 df-rp 12046 df-fz 12540 df-fzo 12680 df-seq 13016 df-exp 13075 df-hash 13332 df-cj 14058 df-re 14059 df-im 14060 df-sqrt 14194 df-abs 14195 df-clim 14438 df-prod 14855 df-risefac 14956 |
This theorem is referenced by: risefallfac 14974 risefacfac 14985 |
Copyright terms: Public domain | W3C validator |