Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  risefaccllem Structured version   Visualization version   GIF version

Theorem risefaccllem 14950
 Description: Lemma for rising factorial closure laws. (Contributed by Scott Fenton, 5-Jan-2018.)
Hypotheses
Ref Expression
risefallfaccllem.1 𝑆 ⊆ ℂ
risefallfaccllem.2 1 ∈ 𝑆
risefallfaccllem.3 ((𝑥𝑆𝑦𝑆) → (𝑥 · 𝑦) ∈ 𝑆)
risefaccllem.4 ((𝐴𝑆𝑘 ∈ ℕ0) → (𝐴 + 𝑘) ∈ 𝑆)
Assertion
Ref Expression
risefaccllem ((𝐴𝑆𝑁 ∈ ℕ0) → (𝐴 RiseFac 𝑁) ∈ 𝑆)
Distinct variable groups:   𝐴,𝑘,𝑥,𝑦   𝑘,𝑁,𝑥,𝑦   𝑆,𝑘,𝑥,𝑦

Proof of Theorem risefaccllem
StepHypRef Expression
1 risefallfaccllem.1 . . . 4 𝑆 ⊆ ℂ
21sseli 3748 . . 3 (𝐴𝑆𝐴 ∈ ℂ)
3 risefacval 14945 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 RiseFac 𝑁) = ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 + 𝑘))
42, 3sylan 569 . 2 ((𝐴𝑆𝑁 ∈ ℕ0) → (𝐴 RiseFac 𝑁) = ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 + 𝑘))
51a1i 11 . . . 4 (𝐴𝑆𝑆 ⊆ ℂ)
6 risefallfaccllem.3 . . . . 5 ((𝑥𝑆𝑦𝑆) → (𝑥 · 𝑦) ∈ 𝑆)
76adantl 467 . . . 4 ((𝐴𝑆 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
8 fzfid 12980 . . . 4 (𝐴𝑆 → (0...(𝑁 − 1)) ∈ Fin)
9 elfznn0 12640 . . . . 5 (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ ℕ0)
10 risefaccllem.4 . . . . 5 ((𝐴𝑆𝑘 ∈ ℕ0) → (𝐴 + 𝑘) ∈ 𝑆)
119, 10sylan2 580 . . . 4 ((𝐴𝑆𝑘 ∈ (0...(𝑁 − 1))) → (𝐴 + 𝑘) ∈ 𝑆)
12 risefallfaccllem.2 . . . . 5 1 ∈ 𝑆
1312a1i 11 . . . 4 (𝐴𝑆 → 1 ∈ 𝑆)
145, 7, 8, 11, 13fprodcllem 14888 . . 3 (𝐴𝑆 → ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 + 𝑘) ∈ 𝑆)
1514adantr 466 . 2 ((𝐴𝑆𝑁 ∈ ℕ0) → ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 + 𝑘) ∈ 𝑆)
164, 15eqeltrd 2850 1 ((𝐴𝑆𝑁 ∈ ℕ0) → (𝐴 RiseFac 𝑁) ∈ 𝑆)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   = wceq 1631   ∈ wcel 2145   ⊆ wss 3723  (class class class)co 6796  ℂcc 10140  0cc0 10142  1c1 10143   + caddc 10145   · cmul 10147   − cmin 10472  ℕ0cn0 11499  ...cfz 12533  ∏cprod 14842   RiseFac crisefac 14942 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-inf2 8706  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-pre-sup 10220 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-sup 8508  df-oi 8575  df-card 8969  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-nn 11227  df-2 11285  df-3 11286  df-n0 11500  df-z 11585  df-uz 11894  df-rp 12036  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-clim 14427  df-prod 14843  df-risefac 14943 This theorem is referenced by:  risefaccl  14952  rerisefaccl  14954  nnrisefaccl  14956  zrisefaccl  14957  nn0risefaccl  14959  rprisefaccl  14960
 Copyright terms: Public domain W3C validator