 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  riotav Structured version   Visualization version   GIF version

Theorem riotav 6656
 Description: An iota restricted to the universe is unrestricted. (Contributed by NM, 18-Sep-2011.)
Assertion
Ref Expression
riotav (𝑥 ∈ V 𝜑) = (℩𝑥𝜑)

Proof of Theorem riotav
StepHypRef Expression
1 df-riota 6651 . 2 (𝑥 ∈ V 𝜑) = (℩𝑥(𝑥 ∈ V ∧ 𝜑))
2 vex 3234 . . . 4 𝑥 ∈ V
32biantrur 526 . . 3 (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑))
43iotabii 5911 . 2 (℩𝑥𝜑) = (℩𝑥(𝑥 ∈ V ∧ 𝜑))
51, 4eqtr4i 2676 1 (𝑥 ∈ V 𝜑) = (℩𝑥𝜑)
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 383   = wceq 1523   ∈ wcel 2030  Vcvv 3231  ℩cio 5887  ℩crio 6650 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-rex 2947  df-v 3233  df-uni 4469  df-iota 5889  df-riota 6651 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator