MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riotauni Structured version   Visualization version   GIF version

Theorem riotauni 6780
Description: Restricted iota in terms of class union. (Contributed by NM, 11-Oct-2011.)
Assertion
Ref Expression
riotauni (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) = {𝑥𝐴𝜑})

Proof of Theorem riotauni
StepHypRef Expression
1 df-reu 3057 . . 3 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
2 iotauni 6024 . . 3 (∃!𝑥(𝑥𝐴𝜑) → (℩𝑥(𝑥𝐴𝜑)) = {𝑥 ∣ (𝑥𝐴𝜑)})
31, 2sylbi 207 . 2 (∃!𝑥𝐴 𝜑 → (℩𝑥(𝑥𝐴𝜑)) = {𝑥 ∣ (𝑥𝐴𝜑)})
4 df-riota 6774 . 2 (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
5 df-rab 3059 . . 3 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
65unieqi 4597 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
73, 4, 63eqtr4g 2819 1 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) = {𝑥𝐴𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  ∃!weu 2607  {cab 2746  ∃!wreu 3052  {crab 3054   cuni 4588  cio 6010  crio 6773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-un 3720  df-sn 4322  df-pr 4324  df-uni 4589  df-iota 6012  df-riota 6774
This theorem is referenced by:  riotassuni  6811  supval2  8526  dfac2a  9142
  Copyright terms: Public domain W3C validator