![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > riotasv | Structured version Visualization version GIF version |
Description: Value of description binder 𝐷 for a single-valued class expression 𝐶(𝑦) (as in e.g. reusv2 5003). Special case of riota2f 6775. (Contributed by NM, 26-Jan-2013.) (Proof shortened by Mario Carneiro, 6-Dec-2016.) |
Ref | Expression |
---|---|
riotasv.1 | ⊢ 𝐴 ∈ V |
riotasv.2 | ⊢ 𝐷 = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶)) |
Ref | Expression |
---|---|
riotasv | ⊢ ((𝐷 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑) → 𝐷 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riotasv.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | riotasv.2 | . . . . 5 ⊢ 𝐷 = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶)) | |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝐷 ∈ 𝐴 → 𝐷 = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶))) |
4 | id 22 | . . . 4 ⊢ (𝐷 ∈ 𝐴 → 𝐷 ∈ 𝐴) | |
5 | 3, 4 | riotasvd 34764 | . . 3 ⊢ ((𝐷 ∈ 𝐴 ∧ 𝐴 ∈ V) → ((𝑦 ∈ 𝐵 ∧ 𝜑) → 𝐷 = 𝐶)) |
6 | 1, 5 | mpan2 671 | . 2 ⊢ (𝐷 ∈ 𝐴 → ((𝑦 ∈ 𝐵 ∧ 𝜑) → 𝐷 = 𝐶)) |
7 | 6 | 3impib 1108 | 1 ⊢ ((𝐷 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑) → 𝐷 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 ∀wral 3061 Vcvv 3351 ℩crio 6753 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-riotaBAD 34761 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-iota 5994 df-fun 6033 df-fv 6039 df-riota 6754 df-undef 7551 |
This theorem is referenced by: cdleme26e 36168 cdleme26eALTN 36170 cdleme26fALTN 36171 cdleme26f 36172 cdleme26f2ALTN 36173 cdleme26f2 36174 |
Copyright terms: Public domain | W3C validator |