![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > riotabiia | Structured version Visualization version GIF version |
Description: Equivalent wff's yield equal restricted iotas (inference rule). (rabbiia 3215 analog.) (Contributed by NM, 16-Jan-2012.) |
Ref | Expression |
---|---|
riotabiia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
riotabiia | ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2651 | . 2 ⊢ V = V | |
2 | riotabiia.1 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | adantl 481 | . . 3 ⊢ ((V = V ∧ 𝑥 ∈ 𝐴) → (𝜑 ↔ 𝜓)) |
4 | 3 | riotabidva 6667 | . 2 ⊢ (V = V → (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥 ∈ 𝐴 𝜓)) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1523 ∈ wcel 2030 Vcvv 3231 ℩crio 6650 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-rex 2947 df-uni 4469 df-iota 5889 df-riota 6651 |
This theorem is referenced by: riotaxfrd 6682 lubfval 17025 glbfval 17038 oduglb 17186 odulub 17188 cnlnadjlem5 29058 cdj3lem3 29425 cdj3lem3b 29427 lshpkrlem1 34715 cdleme25cv 35963 cdlemk35 36517 |
Copyright terms: Public domain | W3C validator |