![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > riota5 | Structured version Visualization version GIF version |
Description: A method for computing restricted iota. (Contributed by NM, 20-Oct-2011.) (Revised by Mario Carneiro, 6-Dec-2016.) |
Ref | Expression |
---|---|
riota5.1 | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
riota5.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝑥 = 𝐵)) |
Ref | Expression |
---|---|
riota5 | ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcvd 2913 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
2 | riota5.1 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
3 | riota5.2 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝑥 = 𝐵)) | |
4 | 1, 2, 3 | riota5f 6778 | 1 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1630 ∈ wcel 2144 ℩crio 6752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ral 3065 df-rex 3066 df-reu 3067 df-v 3351 df-sbc 3586 df-un 3726 df-sn 4315 df-pr 4317 df-uni 4573 df-iota 5994 df-riota 6753 |
This theorem is referenced by: f1ocnvfv3 6788 sqrt0 14189 lubid 17197 lubun 17330 odval2 18176 adjvalval 29130 xdivpnfrp 29975 xrsinvgval 30011 dfgcd3 33500 poimirlem6 33741 poimirlem7 33742 lub0N 34991 glb0N 34995 trlval2 35965 cdlemefrs32fva 36202 cdleme32fva 36239 cdlemg1a 36372 unxpwdom3 38184 |
Copyright terms: Public domain | W3C validator |