![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ringrz | Structured version Visualization version GIF version |
Description: The zero of a unital ring is a right-absorbing element. (Contributed by FL, 31-Aug-2009.) |
Ref | Expression |
---|---|
rngz.b | ⊢ 𝐵 = (Base‘𝑅) |
rngz.t | ⊢ · = (.r‘𝑅) |
rngz.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
ringrz | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · 0 ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringgrp 18752 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
2 | rngz.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑅) | |
3 | rngz.z | . . . . . . . 8 ⊢ 0 = (0g‘𝑅) | |
4 | 2, 3 | grpidcl 17651 | . . . . . . 7 ⊢ (𝑅 ∈ Grp → 0 ∈ 𝐵) |
5 | eqid 2760 | . . . . . . . 8 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
6 | 2, 5, 3 | grplid 17653 | . . . . . . 7 ⊢ ((𝑅 ∈ Grp ∧ 0 ∈ 𝐵) → ( 0 (+g‘𝑅) 0 ) = 0 ) |
7 | 4, 6 | mpdan 705 | . . . . . 6 ⊢ (𝑅 ∈ Grp → ( 0 (+g‘𝑅) 0 ) = 0 ) |
8 | 1, 7 | syl 17 | . . . . 5 ⊢ (𝑅 ∈ Ring → ( 0 (+g‘𝑅) 0 ) = 0 ) |
9 | 8 | adantr 472 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ( 0 (+g‘𝑅) 0 ) = 0 ) |
10 | 9 | oveq2d 6829 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · ( 0 (+g‘𝑅) 0 )) = (𝑋 · 0 )) |
11 | simpr 479 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
12 | 1, 4 | syl 17 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 0 ∈ 𝐵) |
13 | 12 | adantr 472 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 0 ∈ 𝐵) |
14 | 11, 13, 13 | 3jca 1123 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ 0 ∈ 𝐵)) |
15 | rngz.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
16 | 2, 5, 15 | ringdi 18766 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ 0 ∈ 𝐵)) → (𝑋 · ( 0 (+g‘𝑅) 0 )) = ((𝑋 · 0 )(+g‘𝑅)(𝑋 · 0 ))) |
17 | 14, 16 | syldan 488 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · ( 0 (+g‘𝑅) 0 )) = ((𝑋 · 0 )(+g‘𝑅)(𝑋 · 0 ))) |
18 | 1 | adantr 472 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑅 ∈ Grp) |
19 | 2, 15 | ringcl 18761 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → (𝑋 · 0 ) ∈ 𝐵) |
20 | 13, 19 | mpd3an3 1574 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · 0 ) ∈ 𝐵) |
21 | 2, 5, 3 | grplid 17653 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ (𝑋 · 0 ) ∈ 𝐵) → ( 0 (+g‘𝑅)(𝑋 · 0 )) = (𝑋 · 0 )) |
22 | 21 | eqcomd 2766 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ (𝑋 · 0 ) ∈ 𝐵) → (𝑋 · 0 ) = ( 0 (+g‘𝑅)(𝑋 · 0 ))) |
23 | 18, 20, 22 | syl2anc 696 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · 0 ) = ( 0 (+g‘𝑅)(𝑋 · 0 ))) |
24 | 10, 17, 23 | 3eqtr3d 2802 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ((𝑋 · 0 )(+g‘𝑅)(𝑋 · 0 )) = ( 0 (+g‘𝑅)(𝑋 · 0 ))) |
25 | 2, 5 | grprcan 17656 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ ((𝑋 · 0 ) ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ (𝑋 · 0 ) ∈ 𝐵)) → (((𝑋 · 0 )(+g‘𝑅)(𝑋 · 0 )) = ( 0 (+g‘𝑅)(𝑋 · 0 )) ↔ (𝑋 · 0 ) = 0 )) |
26 | 18, 20, 13, 20, 25 | syl13anc 1479 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (((𝑋 · 0 )(+g‘𝑅)(𝑋 · 0 )) = ( 0 (+g‘𝑅)(𝑋 · 0 )) ↔ (𝑋 · 0 ) = 0 )) |
27 | 24, 26 | mpbid 222 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · 0 ) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ‘cfv 6049 (class class class)co 6813 Basecbs 16059 +gcplusg 16143 .rcmulr 16144 0gc0g 16302 Grpcgrp 17623 Ringcrg 18747 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-2 11271 df-ndx 16062 df-slot 16063 df-base 16065 df-sets 16066 df-plusg 16156 df-0g 16304 df-mgm 17443 df-sgrp 17485 df-mnd 17496 df-grp 17626 df-mgp 18690 df-ring 18749 |
This theorem is referenced by: ringsrg 18789 ringinvnz1ne0 18792 ringinvnzdiv 18793 rngnegr 18795 gsummgp0 18808 gsumdixp 18809 dvdsr02 18856 isdrng2 18959 drngmul0or 18970 cntzsubr 19014 isabvd 19022 lmodvs0 19099 rrgeq0 19492 unitrrg 19495 domneq0 19499 psrridm 19606 mpllsslem 19637 mplsubrglem 19641 mplcoe1 19667 mplmon2 19695 evlslem4 19710 coe1tmmul2 19848 cply1mul 19866 ocvlss 20218 frlmphl 20322 uvcresum 20334 mamurid 20450 matsc 20458 dmatmul 20505 dmatscmcl 20511 scmatscmide 20515 mulmarep1el 20580 mdetdiaglem 20606 mdetero 20618 mdetunilem8 20627 mdetunilem9 20628 mdetuni0 20629 maducoeval2 20648 madugsum 20651 smadiadetlem1a 20671 smadiadetglem2 20680 chpdmatlem2 20846 chfacfpmmul0 20869 cayhamlem4 20895 mdegvscale 24034 mdegmullem 24037 coe1mul3 24058 deg1mul3le 24075 ply1divex 24095 ply1rem 24122 fta1blem 24127 kerunit 30132 matunitlindflem1 33718 lfl0f 34859 lfl0sc 34872 lkrlss 34885 lcfrlem33 37366 hdmapinvlem3 37714 hdmapglem7b 37722 cntzsdrg 38274 mgpsumz 42651 domnmsuppn0 42660 rmsuppss 42661 ply1mulgsumlem2 42685 lincresunit2 42777 |
Copyright terms: Public domain | W3C validator |