MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringrghm Structured version   Visualization version   GIF version

Theorem ringrghm 18812
Description: Right-multiplication in a ring by a fixed element of the ring is a group homomorphism. (It is not usually a ring homomorphism.) (Contributed by Mario Carneiro, 4-May-2015.)
Hypotheses
Ref Expression
ringlghm.b 𝐵 = (Base‘𝑅)
ringlghm.t · = (.r𝑅)
Assertion
Ref Expression
ringrghm ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑥 · 𝑋)) ∈ (𝑅 GrpHom 𝑅))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑅   𝑥, ·   𝑥,𝑋

Proof of Theorem ringrghm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringlghm.b . 2 𝐵 = (Base‘𝑅)
2 eqid 2770 . 2 (+g𝑅) = (+g𝑅)
3 ringgrp 18759 . . 3 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
43adantr 466 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝑅 ∈ Grp)
5 ringlghm.t . . . . . 6 · = (.r𝑅)
61, 5ringcl 18768 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥𝐵𝑋𝐵) → (𝑥 · 𝑋) ∈ 𝐵)
763expa 1110 . . . 4 (((𝑅 ∈ Ring ∧ 𝑥𝐵) ∧ 𝑋𝐵) → (𝑥 · 𝑋) ∈ 𝐵)
87an32s 623 . . 3 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ 𝑥𝐵) → (𝑥 · 𝑋) ∈ 𝐵)
9 eqid 2770 . . 3 (𝑥𝐵 ↦ (𝑥 · 𝑋)) = (𝑥𝐵 ↦ (𝑥 · 𝑋))
108, 9fmptd 6527 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑥 · 𝑋)):𝐵𝐵)
11 df-3an 1072 . . . . 5 ((𝑦𝐵𝑧𝐵𝑋𝐵) ↔ ((𝑦𝐵𝑧𝐵) ∧ 𝑋𝐵))
121, 2, 5ringdir 18774 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑦𝐵𝑧𝐵𝑋𝐵)) → ((𝑦(+g𝑅)𝑧) · 𝑋) = ((𝑦 · 𝑋)(+g𝑅)(𝑧 · 𝑋)))
1311, 12sylan2br 574 . . . 4 ((𝑅 ∈ Ring ∧ ((𝑦𝐵𝑧𝐵) ∧ 𝑋𝐵)) → ((𝑦(+g𝑅)𝑧) · 𝑋) = ((𝑦 · 𝑋)(+g𝑅)(𝑧 · 𝑋)))
1413anass1rs 626 . . 3 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑦(+g𝑅)𝑧) · 𝑋) = ((𝑦 · 𝑋)(+g𝑅)(𝑧 · 𝑋)))
151, 2ringacl 18785 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝑅)𝑧) ∈ 𝐵)
16153expb 1112 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝑅)𝑧) ∈ 𝐵)
1716adantlr 686 . . . 4 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝑅)𝑧) ∈ 𝐵)
18 oveq1 6799 . . . . 5 (𝑥 = (𝑦(+g𝑅)𝑧) → (𝑥 · 𝑋) = ((𝑦(+g𝑅)𝑧) · 𝑋))
19 ovex 6822 . . . . 5 ((𝑦(+g𝑅)𝑧) · 𝑋) ∈ V
2018, 9, 19fvmpt 6424 . . . 4 ((𝑦(+g𝑅)𝑧) ∈ 𝐵 → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(𝑦(+g𝑅)𝑧)) = ((𝑦(+g𝑅)𝑧) · 𝑋))
2117, 20syl 17 . . 3 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(𝑦(+g𝑅)𝑧)) = ((𝑦(+g𝑅)𝑧) · 𝑋))
22 oveq1 6799 . . . . . 6 (𝑥 = 𝑦 → (𝑥 · 𝑋) = (𝑦 · 𝑋))
23 ovex 6822 . . . . . 6 (𝑦 · 𝑋) ∈ V
2422, 9, 23fvmpt 6424 . . . . 5 (𝑦𝐵 → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑦) = (𝑦 · 𝑋))
25 oveq1 6799 . . . . . 6 (𝑥 = 𝑧 → (𝑥 · 𝑋) = (𝑧 · 𝑋))
26 ovex 6822 . . . . . 6 (𝑧 · 𝑋) ∈ V
2725, 9, 26fvmpt 6424 . . . . 5 (𝑧𝐵 → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑧) = (𝑧 · 𝑋))
2824, 27oveqan12d 6811 . . . 4 ((𝑦𝐵𝑧𝐵) → (((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑦)(+g𝑅)((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑧)) = ((𝑦 · 𝑋)(+g𝑅)(𝑧 · 𝑋)))
2928adantl 467 . . 3 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑦)(+g𝑅)((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑧)) = ((𝑦 · 𝑋)(+g𝑅)(𝑧 · 𝑋)))
3014, 21, 293eqtr4d 2814 . 2 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(𝑦(+g𝑅)𝑧)) = (((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑦)(+g𝑅)((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑧)))
311, 1, 2, 2, 4, 4, 10, 30isghmd 17876 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑥 · 𝑋)) ∈ (𝑅 GrpHom 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1070   = wceq 1630  wcel 2144  cmpt 4861  cfv 6031  (class class class)co 6792  Basecbs 16063  +gcplusg 16148  .rcmulr 16149  Grpcgrp 17629   GrpHom cghm 17864  Ringcrg 18754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-plusg 16161  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-grp 17632  df-ghm 17865  df-mgp 18697  df-ring 18756
This theorem is referenced by:  gsummulc1  18813  fidomndrnglem  19520
  Copyright terms: Public domain W3C validator