![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ringmnd | Structured version Visualization version GIF version |
Description: A ring is a monoid under addition. (Contributed by Mario Carneiro, 7-Jan-2015.) |
Ref | Expression |
---|---|
ringmnd | ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringgrp 18598 | . 2 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
2 | grpmnd 17476 | . 2 ⊢ (𝑅 ∈ Grp → 𝑅 ∈ Mnd) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2030 Mndcmnd 17341 Grpcgrp 17469 Ringcrg 18593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-nul 4822 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-iota 5889 df-fv 5934 df-ov 6693 df-grp 17472 df-ring 18595 |
This theorem is referenced by: ringmgm 18603 gsummulc1 18652 gsummulc2 18653 gsummgp0 18654 prdsringd 18658 pwsco1rhm 18786 lmodvsmmulgdi 18946 psrlidm 19451 psrridm 19452 mplsubrglem 19487 mplmonmul 19512 evlslem2 19560 evlslem3 19562 coe1tmmul2 19694 coe1tmmul 19695 cply1mul 19712 gsummoncoe1 19722 evls1gsumadd 19737 cnfldmulg 19826 cnsubmlem 19842 gsumfsum 19861 nn0srg 19864 rge0srg 19865 zring0 19876 re0g 20006 uvcresum 20180 mamudi 20257 mamudir 20258 mamulid 20295 mamurid 20296 mat1dimmul 20330 mat1mhm 20338 dmatmul 20351 scmatscm 20367 1mavmul 20402 mulmarep1gsum1 20427 mdet0pr 20446 m1detdiag 20451 mdetdiag 20453 mdet0 20460 m2detleib 20485 maducoeval2 20494 madugsum 20497 smadiadetlem1a 20517 smadiadetlem3 20522 smadiadet 20524 cpmatmcllem 20571 mat2pmatghm 20583 mat2pmatmul 20584 pmatcollpw3fi1lem1 20639 idpm2idmp 20654 mp2pm2mplem4 20662 pm2mpghm 20669 monmat2matmon 20677 pm2mp 20678 chfacfscmulgsum 20713 chfacfpmmulgsum 20717 cpmadugsumlemF 20729 cayhamlem4 20741 tdeglem4 23865 tdeglem2 23866 mdegmullem 23883 coe1mul3 23904 plypf1 24013 tayl0 24161 jensen 24760 amgmlem 24761 suborng 29943 xrge0slmod 29972 zringnm 30132 rezh 30143 amgm2d 38818 amgm3d 38819 amgm4d 38820 2zrng0 42263 cznrng 42280 mgpsumz 42466 ply1mulgsumlem2 42500 amgmwlem 42876 amgmw2d 42878 |
Copyright terms: Public domain | W3C validator |