![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ringmgp | Structured version Visualization version GIF version |
Description: A ring is a monoid under multiplication. (Contributed by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
ringmgp.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
Ref | Expression |
---|---|
ringmgp | ⊢ (𝑅 ∈ Ring → 𝐺 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2651 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | ringmgp.g | . . 3 ⊢ 𝐺 = (mulGrp‘𝑅) | |
3 | eqid 2651 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
4 | eqid 2651 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
5 | 1, 2, 3, 4 | isring 18597 | . 2 ⊢ (𝑅 ∈ Ring ↔ (𝑅 ∈ Grp ∧ 𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)(𝑦(+g‘𝑅)𝑧)) = ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)(𝑥(.r‘𝑅)𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧))))) |
6 | 5 | simp2bi 1097 | 1 ⊢ (𝑅 ∈ Ring → 𝐺 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∀wral 2941 ‘cfv 5926 (class class class)co 6690 Basecbs 15904 +gcplusg 15988 .rcmulr 15989 Mndcmnd 17341 Grpcgrp 17469 mulGrpcmgp 18535 Ringcrg 18593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-nul 4822 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-iota 5889 df-fv 5934 df-ov 6693 df-ring 18595 |
This theorem is referenced by: mgpf 18605 ringcl 18607 iscrng2 18609 ringass 18610 ringideu 18611 ringidcl 18614 ringidmlem 18616 ringsrg 18635 unitsubm 18716 dfrhm2 18765 isrhm2d 18776 idrhm 18779 pwsco1rhm 18786 pwsco2rhm 18787 subrgcrng 18832 subrgsubm 18841 issubrg3 18856 cntzsubr 18860 pwsdiagrhm 18861 assamulgscmlem2 19397 psrcrng 19461 mplcoe3 19514 mplcoe5lem 19515 mplcoe5 19516 ply1moncl 19689 coe1pwmul 19697 ply1coefsupp 19713 ply1coe 19714 gsummoncoe1 19722 lply1binomsc 19725 evls1gsummul 19738 evl1expd 19757 evl1gsummul 19772 evl1scvarpw 19775 evl1scvarpwval 19776 evl1gsummon 19777 cnfldexp 19827 expmhm 19863 nn0srg 19864 rge0srg 19865 ringvcl 20252 mat1mhm 20338 scmatmhm 20388 m1detdiag 20451 mdetdiaglem 20452 m2detleiblem2 20482 mat2pmatmhm 20586 pmatcollpwscmatlem1 20642 mply1topmatcllem 20656 mply1topmatcl 20658 pm2mpghm 20669 pm2mpmhm 20673 monmat2matmon 20677 pm2mp 20678 chpscmatgsumbin 20697 chpscmatgsummon 20698 chfacfscmulcl 20710 chfacfscmul0 20711 chfacfpmmulcl 20714 chfacfpmmul0 20715 chfacfpmmulgsum2 20718 cayhamlem1 20719 cpmadugsumlemB 20727 cpmadugsumlemC 20728 cpmadugsumlemF 20729 cayhamlem2 20737 cayhamlem4 20741 nrgtrg 22541 deg1pw 23925 plypf1 24013 efsubm 24342 amgm 24762 wilthlem2 24840 wilthlem3 24841 dchrelbas3 25008 lgsqrlem2 25117 lgsqrlem3 25118 lgsqrlem4 25119 psgnid 29975 iistmd 30076 hbtlem4 38013 subrgacs 38087 idomrootle 38090 isdomn3 38099 mon1psubm 38101 amgm2d 38818 amgm3d 38819 amgm4d 38820 c0rhm 42237 c0rnghm 42238 lidlmsgrp 42251 invginvrid 42473 ply1mulgsumlem4 42502 ply1mulgsum 42503 amgmw2d 42878 |
Copyright terms: Public domain | W3C validator |