![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ringlz | Structured version Visualization version GIF version |
Description: The zero of a unital ring is a left-absorbing element. (Contributed by FL, 31-Aug-2009.) |
Ref | Expression |
---|---|
rngz.b | ⊢ 𝐵 = (Base‘𝑅) |
rngz.t | ⊢ · = (.r‘𝑅) |
rngz.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
ringlz | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ( 0 · 𝑋) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringgrp 18744 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
2 | rngz.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑅) | |
3 | rngz.z | . . . . . . . 8 ⊢ 0 = (0g‘𝑅) | |
4 | 2, 3 | grpidcl 17643 | . . . . . . 7 ⊢ (𝑅 ∈ Grp → 0 ∈ 𝐵) |
5 | eqid 2752 | . . . . . . . 8 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
6 | 2, 5, 3 | grplid 17645 | . . . . . . 7 ⊢ ((𝑅 ∈ Grp ∧ 0 ∈ 𝐵) → ( 0 (+g‘𝑅) 0 ) = 0 ) |
7 | 4, 6 | mpdan 705 | . . . . . 6 ⊢ (𝑅 ∈ Grp → ( 0 (+g‘𝑅) 0 ) = 0 ) |
8 | 1, 7 | syl 17 | . . . . 5 ⊢ (𝑅 ∈ Ring → ( 0 (+g‘𝑅) 0 ) = 0 ) |
9 | 8 | adantr 472 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ( 0 (+g‘𝑅) 0 ) = 0 ) |
10 | 9 | oveq1d 6820 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (( 0 (+g‘𝑅) 0 ) · 𝑋) = ( 0 · 𝑋)) |
11 | 1, 4 | syl 17 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 0 ∈ 𝐵) |
12 | 11 | adantr 472 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 0 ∈ 𝐵) |
13 | simpr 479 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
14 | 12, 12, 13 | 3jca 1122 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ( 0 ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) |
15 | rngz.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
16 | 2, 5, 15 | ringdir 18759 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ ( 0 ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → (( 0 (+g‘𝑅) 0 ) · 𝑋) = (( 0 · 𝑋)(+g‘𝑅)( 0 · 𝑋))) |
17 | 14, 16 | syldan 488 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (( 0 (+g‘𝑅) 0 ) · 𝑋) = (( 0 · 𝑋)(+g‘𝑅)( 0 · 𝑋))) |
18 | 1 | adantr 472 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑅 ∈ Grp) |
19 | simpl 474 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑅 ∈ Ring) | |
20 | 2, 15 | ringcl 18753 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ( 0 · 𝑋) ∈ 𝐵) |
21 | 19, 12, 13, 20 | syl3anc 1473 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ( 0 · 𝑋) ∈ 𝐵) |
22 | 2, 5, 3 | grprid 17646 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ ( 0 · 𝑋) ∈ 𝐵) → (( 0 · 𝑋)(+g‘𝑅) 0 ) = ( 0 · 𝑋)) |
23 | 22 | eqcomd 2758 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ ( 0 · 𝑋) ∈ 𝐵) → ( 0 · 𝑋) = (( 0 · 𝑋)(+g‘𝑅) 0 )) |
24 | 18, 21, 23 | syl2anc 696 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ( 0 · 𝑋) = (( 0 · 𝑋)(+g‘𝑅) 0 )) |
25 | 10, 17, 24 | 3eqtr3d 2794 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (( 0 · 𝑋)(+g‘𝑅)( 0 · 𝑋)) = (( 0 · 𝑋)(+g‘𝑅) 0 )) |
26 | 2, 5 | grplcan 17670 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ (( 0 · 𝑋) ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ ( 0 · 𝑋) ∈ 𝐵)) → ((( 0 · 𝑋)(+g‘𝑅)( 0 · 𝑋)) = (( 0 · 𝑋)(+g‘𝑅) 0 ) ↔ ( 0 · 𝑋) = 0 )) |
27 | 18, 21, 12, 21, 26 | syl13anc 1475 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ((( 0 · 𝑋)(+g‘𝑅)( 0 · 𝑋)) = (( 0 · 𝑋)(+g‘𝑅) 0 ) ↔ ( 0 · 𝑋) = 0 )) |
28 | 25, 27 | mpbid 222 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ( 0 · 𝑋) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 = wceq 1624 ∈ wcel 2131 ‘cfv 6041 (class class class)co 6805 Basecbs 16051 +gcplusg 16135 .rcmulr 16136 0gc0g 16294 Grpcgrp 17615 Ringcrg 18739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-rep 4915 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-cnex 10176 ax-resscn 10177 ax-1cn 10178 ax-icn 10179 ax-addcl 10180 ax-addrcl 10181 ax-mulcl 10182 ax-mulrcl 10183 ax-mulcom 10184 ax-addass 10185 ax-mulass 10186 ax-distr 10187 ax-i2m1 10188 ax-1ne0 10189 ax-1rid 10190 ax-rnegex 10191 ax-rrecex 10192 ax-cnre 10193 ax-pre-lttri 10194 ax-pre-lttrn 10195 ax-pre-ltadd 10196 ax-pre-mulgt0 10197 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-nel 3028 df-ral 3047 df-rex 3048 df-reu 3049 df-rmo 3050 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4581 df-iun 4666 df-br 4797 df-opab 4857 df-mpt 4874 df-tr 4897 df-id 5166 df-eprel 5171 df-po 5179 df-so 5180 df-fr 5217 df-we 5219 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-pred 5833 df-ord 5879 df-on 5880 df-lim 5881 df-suc 5882 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-riota 6766 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-om 7223 df-wrecs 7568 df-recs 7629 df-rdg 7667 df-er 7903 df-en 8114 df-dom 8115 df-sdom 8116 df-pnf 10260 df-mnf 10261 df-xr 10262 df-ltxr 10263 df-le 10264 df-sub 10452 df-neg 10453 df-nn 11205 df-2 11263 df-ndx 16054 df-slot 16055 df-base 16057 df-sets 16058 df-plusg 16148 df-0g 16296 df-mgm 17435 df-sgrp 17477 df-mnd 17488 df-grp 17618 df-minusg 17619 df-mgp 18682 df-ring 18741 |
This theorem is referenced by: ringsrg 18781 ring1eq0 18782 ringnegl 18786 mulgass2 18793 gsumdixp 18801 dvdsr01 18847 0unit 18872 irredn0 18895 drngmul0or 18962 cntzsubr 19006 isabvd 19014 domneq0 19491 psrlidm 19597 mplsubrglem 19633 mplmonmul 19658 evlslem4 19702 evlslem6 19707 evlslem3 19708 coe1tmmul 19841 cply1mul 19858 frlmphllem 20313 mamulid 20441 dmatmul 20497 scmatscm 20513 1mavmul 20548 mdetdiaglem 20598 mdetr0 20605 mdegmullem 24029 coe1mul3 24050 fta1glem1 24116 lflsc0N 34865 hdmapinvlem3 37706 hdmapinvlem4 37707 cntzsdrg 38266 zrrnghm 42419 zlidlring 42430 rmsupp0 42651 ply1mulgsumlem2 42677 |
Copyright terms: Public domain | W3C validator |