![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ringidval | Structured version Visualization version GIF version |
Description: The value of the unity element of a ring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
Ref | Expression |
---|---|
ringidval.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
ringidval.u | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
ringidval | ⊢ 1 = (0g‘𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ur 18548 | . . . . 5 ⊢ 1r = (0g ∘ mulGrp) | |
2 | 1 | fveq1i 6230 | . . . 4 ⊢ (1r‘𝑅) = ((0g ∘ mulGrp)‘𝑅) |
3 | fnmgp 18537 | . . . . 5 ⊢ mulGrp Fn V | |
4 | fvco2 6312 | . . . . 5 ⊢ ((mulGrp Fn V ∧ 𝑅 ∈ V) → ((0g ∘ mulGrp)‘𝑅) = (0g‘(mulGrp‘𝑅))) | |
5 | 3, 4 | mpan 706 | . . . 4 ⊢ (𝑅 ∈ V → ((0g ∘ mulGrp)‘𝑅) = (0g‘(mulGrp‘𝑅))) |
6 | 2, 5 | syl5eq 2697 | . . 3 ⊢ (𝑅 ∈ V → (1r‘𝑅) = (0g‘(mulGrp‘𝑅))) |
7 | 0g0 17310 | . . . 4 ⊢ ∅ = (0g‘∅) | |
8 | fvprc 6223 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (1r‘𝑅) = ∅) | |
9 | fvprc 6223 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (mulGrp‘𝑅) = ∅) | |
10 | 9 | fveq2d 6233 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (0g‘(mulGrp‘𝑅)) = (0g‘∅)) |
11 | 7, 8, 10 | 3eqtr4a 2711 | . . 3 ⊢ (¬ 𝑅 ∈ V → (1r‘𝑅) = (0g‘(mulGrp‘𝑅))) |
12 | 6, 11 | pm2.61i 176 | . 2 ⊢ (1r‘𝑅) = (0g‘(mulGrp‘𝑅)) |
13 | ringidval.u | . 2 ⊢ 1 = (1r‘𝑅) | |
14 | ringidval.g | . . 3 ⊢ 𝐺 = (mulGrp‘𝑅) | |
15 | 14 | fveq2i 6232 | . 2 ⊢ (0g‘𝐺) = (0g‘(mulGrp‘𝑅)) |
16 | 12, 13, 15 | 3eqtr4i 2683 | 1 ⊢ 1 = (0g‘𝐺) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1523 ∈ wcel 2030 Vcvv 3231 ∅c0 3948 ∘ ccom 5147 Fn wfn 5921 ‘cfv 5926 0gc0g 16147 mulGrpcmgp 18535 1rcur 18547 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-fv 5934 df-ov 6693 df-slot 15908 df-base 15910 df-0g 16149 df-mgp 18536 df-ur 18548 |
This theorem is referenced by: dfur2 18550 srgidcl 18564 srgidmlem 18566 issrgid 18569 srgpcomp 18578 srg1expzeq1 18585 srgbinom 18591 ringidcl 18614 ringidmlem 18616 isringid 18619 prds1 18660 oppr1 18680 unitsubm 18716 rngidpropd 18741 dfrhm2 18765 isrhm2d 18776 rhm1 18778 subrgsubm 18841 issubrg3 18856 assamulgscmlem1 19396 mplcoe3 19514 mplcoe5 19516 mplbas2 19518 evlslem1 19563 ply1scltm 19699 lply1binomsc 19725 evls1gsummul 19738 evl1gsummul 19772 cnfldexp 19827 expmhm 19863 nn0srg 19864 rge0srg 19865 madetsumid 20315 mat1mhm 20338 scmatmhm 20388 mdet0pr 20446 mdetunilem7 20472 smadiadetlem4 20523 mat2pmatmhm 20586 pm2mpmhm 20673 chfacfscmulgsum 20713 chfacfpmmulgsum 20717 cpmadugsumlemF 20729 efsubm 24342 amgmlem 24761 amgm 24762 wilthlem2 24840 wilthlem3 24841 dchrelbas3 25008 dchrzrh1 25014 dchrmulcl 25019 dchrn0 25020 dchrinvcl 25023 dchrfi 25025 dchrabs 25030 sumdchr2 25040 rpvmasum2 25246 psgnid 29975 iistmd 30076 isdomn3 38099 mon1psubm 38101 deg1mhm 38102 c0rhm 42237 c0rnghm 42238 amgmwlem 42876 amgmlemALT 42877 |
Copyright terms: Public domain | W3C validator |