![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ringcval | Structured version Visualization version GIF version |
Description: Value of the category of unital rings (in a universe). (Contributed by AV, 13-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
Ref | Expression |
---|---|
ringcval.c | ⊢ 𝐶 = (RingCat‘𝑈) |
ringcval.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
ringcval.b | ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) |
ringcval.h | ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) |
Ref | Expression |
---|---|
ringcval | ⊢ (𝜑 → 𝐶 = ((ExtStrCat‘𝑈) ↾cat 𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringcval.c | . 2 ⊢ 𝐶 = (RingCat‘𝑈) | |
2 | df-ringc 42533 | . . . 4 ⊢ RingCat = (𝑢 ∈ V ↦ ((ExtStrCat‘𝑢) ↾cat ( RingHom ↾ ((𝑢 ∩ Ring) × (𝑢 ∩ Ring))))) | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → RingCat = (𝑢 ∈ V ↦ ((ExtStrCat‘𝑢) ↾cat ( RingHom ↾ ((𝑢 ∩ Ring) × (𝑢 ∩ Ring)))))) |
4 | fveq2 6332 | . . . . 5 ⊢ (𝑢 = 𝑈 → (ExtStrCat‘𝑢) = (ExtStrCat‘𝑈)) | |
5 | 4 | adantl 467 | . . . 4 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → (ExtStrCat‘𝑢) = (ExtStrCat‘𝑈)) |
6 | ineq1 3958 | . . . . . . . 8 ⊢ (𝑢 = 𝑈 → (𝑢 ∩ Ring) = (𝑈 ∩ Ring)) | |
7 | 6 | sqxpeqd 5281 | . . . . . . 7 ⊢ (𝑢 = 𝑈 → ((𝑢 ∩ Ring) × (𝑢 ∩ Ring)) = ((𝑈 ∩ Ring) × (𝑈 ∩ Ring))) |
8 | ringcval.b | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) | |
9 | 8 | sqxpeqd 5281 | . . . . . . . 8 ⊢ (𝜑 → (𝐵 × 𝐵) = ((𝑈 ∩ Ring) × (𝑈 ∩ Ring))) |
10 | 9 | eqcomd 2777 | . . . . . . 7 ⊢ (𝜑 → ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)) = (𝐵 × 𝐵)) |
11 | 7, 10 | sylan9eqr 2827 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → ((𝑢 ∩ Ring) × (𝑢 ∩ Ring)) = (𝐵 × 𝐵)) |
12 | 11 | reseq2d 5534 | . . . . 5 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → ( RingHom ↾ ((𝑢 ∩ Ring) × (𝑢 ∩ Ring))) = ( RingHom ↾ (𝐵 × 𝐵))) |
13 | ringcval.h | . . . . . . 7 ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) | |
14 | 13 | eqcomd 2777 | . . . . . 6 ⊢ (𝜑 → ( RingHom ↾ (𝐵 × 𝐵)) = 𝐻) |
15 | 14 | adantr 466 | . . . . 5 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → ( RingHom ↾ (𝐵 × 𝐵)) = 𝐻) |
16 | 12, 15 | eqtrd 2805 | . . . 4 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → ( RingHom ↾ ((𝑢 ∩ Ring) × (𝑢 ∩ Ring))) = 𝐻) |
17 | 5, 16 | oveq12d 6811 | . . 3 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → ((ExtStrCat‘𝑢) ↾cat ( RingHom ↾ ((𝑢 ∩ Ring) × (𝑢 ∩ Ring)))) = ((ExtStrCat‘𝑈) ↾cat 𝐻)) |
18 | ringcval.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
19 | elex 3364 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → 𝑈 ∈ V) | |
20 | 18, 19 | syl 17 | . . 3 ⊢ (𝜑 → 𝑈 ∈ V) |
21 | ovexd 6825 | . . 3 ⊢ (𝜑 → ((ExtStrCat‘𝑈) ↾cat 𝐻) ∈ V) | |
22 | 3, 17, 20, 21 | fvmptd 6430 | . 2 ⊢ (𝜑 → (RingCat‘𝑈) = ((ExtStrCat‘𝑈) ↾cat 𝐻)) |
23 | 1, 22 | syl5eq 2817 | 1 ⊢ (𝜑 → 𝐶 = ((ExtStrCat‘𝑈) ↾cat 𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 Vcvv 3351 ∩ cin 3722 ↦ cmpt 4863 × cxp 5247 ↾ cres 5251 ‘cfv 6031 (class class class)co 6793 ↾cat cresc 16675 ExtStrCatcestrc 16969 Ringcrg 18755 RingHom crh 18922 RingCatcringc 42531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-res 5261 df-iota 5994 df-fun 6033 df-fv 6039 df-ov 6796 df-ringc 42533 |
This theorem is referenced by: ringcbas 42539 ringchomfval 42540 ringccofval 42544 dfringc2 42546 ringccat 42552 ringcid 42553 funcringcsetc 42563 |
Copyright terms: Public domain | W3C validator |