MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringcom Structured version   Visualization version   GIF version

Theorem ringcom 18500
Description: Commutativity of the additive group of a ring. (See also lmodcom 18830.) (Contributed by Gérard Lang, 4-Dec-2014.)
Hypotheses
Ref Expression
ringacl.b 𝐵 = (Base‘𝑅)
ringacl.p + = (+g𝑅)
Assertion
Ref Expression
ringcom ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋))

Proof of Theorem ringcom
StepHypRef Expression
1 simp1 1059 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → 𝑅 ∈ Ring)
2 ringacl.b . . . . . . . . . . 11 𝐵 = (Base‘𝑅)
3 eqid 2621 . . . . . . . . . . 11 (1r𝑅) = (1r𝑅)
42, 3ringidcl 18489 . . . . . . . . . 10 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
51, 4syl 17 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (1r𝑅) ∈ 𝐵)
6 ringacl.p . . . . . . . . . 10 + = (+g𝑅)
72, 6ringacl 18499 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (1r𝑅) ∈ 𝐵 ∧ (1r𝑅) ∈ 𝐵) → ((1r𝑅) + (1r𝑅)) ∈ 𝐵)
81, 5, 5, 7syl3anc 1323 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((1r𝑅) + (1r𝑅)) ∈ 𝐵)
9 simp2 1060 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
10 simp3 1061 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
11 eqid 2621 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
122, 6, 11ringdi 18487 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (((1r𝑅) + (1r𝑅)) ∈ 𝐵𝑋𝐵𝑌𝐵)) → (((1r𝑅) + (1r𝑅))(.r𝑅)(𝑋 + 𝑌)) = ((((1r𝑅) + (1r𝑅))(.r𝑅)𝑋) + (((1r𝑅) + (1r𝑅))(.r𝑅)𝑌)))
131, 8, 9, 10, 12syl13anc 1325 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((1r𝑅) + (1r𝑅))(.r𝑅)(𝑋 + 𝑌)) = ((((1r𝑅) + (1r𝑅))(.r𝑅)𝑋) + (((1r𝑅) + (1r𝑅))(.r𝑅)𝑌)))
142, 6ringacl 18499 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
152, 6, 11ringdir 18488 . . . . . . . 8 ((𝑅 ∈ Ring ∧ ((1r𝑅) ∈ 𝐵 ∧ (1r𝑅) ∈ 𝐵 ∧ (𝑋 + 𝑌) ∈ 𝐵)) → (((1r𝑅) + (1r𝑅))(.r𝑅)(𝑋 + 𝑌)) = (((1r𝑅)(.r𝑅)(𝑋 + 𝑌)) + ((1r𝑅)(.r𝑅)(𝑋 + 𝑌))))
161, 5, 5, 14, 15syl13anc 1325 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((1r𝑅) + (1r𝑅))(.r𝑅)(𝑋 + 𝑌)) = (((1r𝑅)(.r𝑅)(𝑋 + 𝑌)) + ((1r𝑅)(.r𝑅)(𝑋 + 𝑌))))
1713, 16eqtr3d 2657 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((((1r𝑅) + (1r𝑅))(.r𝑅)𝑋) + (((1r𝑅) + (1r𝑅))(.r𝑅)𝑌)) = (((1r𝑅)(.r𝑅)(𝑋 + 𝑌)) + ((1r𝑅)(.r𝑅)(𝑋 + 𝑌))))
182, 6, 11ringdir 18488 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ ((1r𝑅) ∈ 𝐵 ∧ (1r𝑅) ∈ 𝐵𝑋𝐵)) → (((1r𝑅) + (1r𝑅))(.r𝑅)𝑋) = (((1r𝑅)(.r𝑅)𝑋) + ((1r𝑅)(.r𝑅)𝑋)))
191, 5, 5, 9, 18syl13anc 1325 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((1r𝑅) + (1r𝑅))(.r𝑅)𝑋) = (((1r𝑅)(.r𝑅)𝑋) + ((1r𝑅)(.r𝑅)𝑋)))
202, 11, 3ringlidm 18492 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ((1r𝑅)(.r𝑅)𝑋) = 𝑋)
211, 9, 20syl2anc 692 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((1r𝑅)(.r𝑅)𝑋) = 𝑋)
2221, 21oveq12d 6622 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((1r𝑅)(.r𝑅)𝑋) + ((1r𝑅)(.r𝑅)𝑋)) = (𝑋 + 𝑋))
2319, 22eqtrd 2655 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((1r𝑅) + (1r𝑅))(.r𝑅)𝑋) = (𝑋 + 𝑋))
242, 6, 11ringdir 18488 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ ((1r𝑅) ∈ 𝐵 ∧ (1r𝑅) ∈ 𝐵𝑌𝐵)) → (((1r𝑅) + (1r𝑅))(.r𝑅)𝑌) = (((1r𝑅)(.r𝑅)𝑌) + ((1r𝑅)(.r𝑅)𝑌)))
251, 5, 5, 10, 24syl13anc 1325 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((1r𝑅) + (1r𝑅))(.r𝑅)𝑌) = (((1r𝑅)(.r𝑅)𝑌) + ((1r𝑅)(.r𝑅)𝑌)))
262, 11, 3ringlidm 18492 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑌𝐵) → ((1r𝑅)(.r𝑅)𝑌) = 𝑌)
271, 10, 26syl2anc 692 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((1r𝑅)(.r𝑅)𝑌) = 𝑌)
2827, 27oveq12d 6622 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((1r𝑅)(.r𝑅)𝑌) + ((1r𝑅)(.r𝑅)𝑌)) = (𝑌 + 𝑌))
2925, 28eqtrd 2655 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((1r𝑅) + (1r𝑅))(.r𝑅)𝑌) = (𝑌 + 𝑌))
3023, 29oveq12d 6622 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((((1r𝑅) + (1r𝑅))(.r𝑅)𝑋) + (((1r𝑅) + (1r𝑅))(.r𝑅)𝑌)) = ((𝑋 + 𝑋) + (𝑌 + 𝑌)))
312, 11, 3ringlidm 18492 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑋 + 𝑌) ∈ 𝐵) → ((1r𝑅)(.r𝑅)(𝑋 + 𝑌)) = (𝑋 + 𝑌))
321, 14, 31syl2anc 692 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((1r𝑅)(.r𝑅)(𝑋 + 𝑌)) = (𝑋 + 𝑌))
3332, 32oveq12d 6622 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((1r𝑅)(.r𝑅)(𝑋 + 𝑌)) + ((1r𝑅)(.r𝑅)(𝑋 + 𝑌))) = ((𝑋 + 𝑌) + (𝑋 + 𝑌)))
3417, 30, 333eqtr3d 2663 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑋) + (𝑌 + 𝑌)) = ((𝑋 + 𝑌) + (𝑋 + 𝑌)))
35 ringgrp 18473 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
361, 35syl 17 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → 𝑅 ∈ Grp)
372, 6ringacl 18499 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑋𝐵) → (𝑋 + 𝑋) ∈ 𝐵)
381, 9, 9, 37syl3anc 1323 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑋) ∈ 𝐵)
392, 6grpass 17352 . . . . . 6 ((𝑅 ∈ Grp ∧ ((𝑋 + 𝑋) ∈ 𝐵𝑌𝐵𝑌𝐵)) → (((𝑋 + 𝑋) + 𝑌) + 𝑌) = ((𝑋 + 𝑋) + (𝑌 + 𝑌)))
4036, 38, 10, 10, 39syl13anc 1325 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((𝑋 + 𝑋) + 𝑌) + 𝑌) = ((𝑋 + 𝑋) + (𝑌 + 𝑌)))
412, 6grpass 17352 . . . . . 6 ((𝑅 ∈ Grp ∧ ((𝑋 + 𝑌) ∈ 𝐵𝑋𝐵𝑌𝐵)) → (((𝑋 + 𝑌) + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + (𝑋 + 𝑌)))
4236, 14, 9, 10, 41syl13anc 1325 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((𝑋 + 𝑌) + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + (𝑋 + 𝑌)))
4334, 40, 423eqtr4d 2665 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (((𝑋 + 𝑋) + 𝑌) + 𝑌) = (((𝑋 + 𝑌) + 𝑋) + 𝑌))
442, 6ringacl 18499 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋 + 𝑋) ∈ 𝐵𝑌𝐵) → ((𝑋 + 𝑋) + 𝑌) ∈ 𝐵)
451, 38, 10, 44syl3anc 1323 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑋) + 𝑌) ∈ 𝐵)
462, 6ringacl 18499 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋 + 𝑌) ∈ 𝐵𝑋𝐵) → ((𝑋 + 𝑌) + 𝑋) ∈ 𝐵)
471, 14, 9, 46syl3anc 1323 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑌) + 𝑋) ∈ 𝐵)
482, 6grprcan 17376 . . . . 5 ((𝑅 ∈ Grp ∧ (((𝑋 + 𝑋) + 𝑌) ∈ 𝐵 ∧ ((𝑋 + 𝑌) + 𝑋) ∈ 𝐵𝑌𝐵)) → ((((𝑋 + 𝑋) + 𝑌) + 𝑌) = (((𝑋 + 𝑌) + 𝑋) + 𝑌) ↔ ((𝑋 + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + 𝑋)))
4936, 45, 47, 10, 48syl13anc 1325 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((((𝑋 + 𝑋) + 𝑌) + 𝑌) = (((𝑋 + 𝑌) + 𝑋) + 𝑌) ↔ ((𝑋 + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + 𝑋)))
5043, 49mpbid 222 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑋) + 𝑌) = ((𝑋 + 𝑌) + 𝑋))
512, 6grpass 17352 . . . 4 ((𝑅 ∈ Grp ∧ (𝑋𝐵𝑋𝐵𝑌𝐵)) → ((𝑋 + 𝑋) + 𝑌) = (𝑋 + (𝑋 + 𝑌)))
5236, 9, 9, 10, 51syl13anc 1325 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑋) + 𝑌) = (𝑋 + (𝑋 + 𝑌)))
532, 6grpass 17352 . . . 4 ((𝑅 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑋𝐵)) → ((𝑋 + 𝑌) + 𝑋) = (𝑋 + (𝑌 + 𝑋)))
5436, 9, 10, 9, 53syl13anc 1325 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑌) + 𝑋) = (𝑋 + (𝑌 + 𝑋)))
5550, 52, 543eqtr3d 2663 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + (𝑋 + 𝑌)) = (𝑋 + (𝑌 + 𝑋)))
562, 6ringacl 18499 . . . 4 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → (𝑌 + 𝑋) ∈ 𝐵)
57563com23 1268 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑌 + 𝑋) ∈ 𝐵)
582, 6grplcan 17398 . . 3 ((𝑅 ∈ Grp ∧ ((𝑋 + 𝑌) ∈ 𝐵 ∧ (𝑌 + 𝑋) ∈ 𝐵𝑋𝐵)) → ((𝑋 + (𝑋 + 𝑌)) = (𝑋 + (𝑌 + 𝑋)) ↔ (𝑋 + 𝑌) = (𝑌 + 𝑋)))
5936, 14, 57, 9, 58syl13anc 1325 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + (𝑋 + 𝑌)) = (𝑋 + (𝑌 + 𝑋)) ↔ (𝑋 + 𝑌) = (𝑌 + 𝑋)))
6055, 59mpbid 222 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  w3a 1036   = wceq 1480  wcel 1987  cfv 5847  (class class class)co 6604  Basecbs 15781  +gcplusg 15862  .rcmulr 15863  Grpcgrp 17343  1rcur 18422  Ringcrg 18468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-plusg 15875  df-0g 16023  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-grp 17346  df-minusg 17347  df-mgp 18411  df-ur 18423  df-ring 18470
This theorem is referenced by:  ringabl  18501
  Copyright terms: Public domain W3C validator