![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ringcmn | Structured version Visualization version GIF version |
Description: A ring is a commutative monoid. (Contributed by Mario Carneiro, 7-Jan-2015.) |
Ref | Expression |
---|---|
ringcmn | ⊢ (𝑅 ∈ Ring → 𝑅 ∈ CMnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringabl 18751 | . 2 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Abel) | |
2 | ablcmn 18370 | . 2 ⊢ (𝑅 ∈ Abel → 𝑅 ∈ CMnd) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ CMnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2127 CMndccmn 18364 Abelcabl 18365 Ringcrg 18718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-rep 4911 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 ax-cnex 10155 ax-resscn 10156 ax-1cn 10157 ax-icn 10158 ax-addcl 10159 ax-addrcl 10160 ax-mulcl 10161 ax-mulrcl 10162 ax-mulcom 10163 ax-addass 10164 ax-mulass 10165 ax-distr 10166 ax-i2m1 10167 ax-1ne0 10168 ax-1rid 10169 ax-rnegex 10170 ax-rrecex 10171 ax-cnre 10172 ax-pre-lttri 10173 ax-pre-lttrn 10174 ax-pre-ltadd 10175 ax-pre-mulgt0 10176 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-nel 3024 df-ral 3043 df-rex 3044 df-reu 3045 df-rmo 3046 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-pss 3719 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-tp 4314 df-op 4316 df-uni 4577 df-iun 4662 df-br 4793 df-opab 4853 df-mpt 4870 df-tr 4893 df-id 5162 df-eprel 5167 df-po 5175 df-so 5176 df-fr 5213 df-we 5215 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-pred 5829 df-ord 5875 df-on 5876 df-lim 5877 df-suc 5878 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-riota 6762 df-ov 6804 df-oprab 6805 df-mpt2 6806 df-om 7219 df-wrecs 7564 df-recs 7625 df-rdg 7663 df-er 7899 df-en 8110 df-dom 8111 df-sdom 8112 df-pnf 10239 df-mnf 10240 df-xr 10241 df-ltxr 10242 df-le 10243 df-sub 10431 df-neg 10432 df-nn 11184 df-2 11242 df-ndx 16033 df-slot 16034 df-base 16036 df-sets 16037 df-plusg 16127 df-0g 16275 df-mgm 17414 df-sgrp 17456 df-mnd 17467 df-grp 17597 df-minusg 17598 df-cmn 18366 df-abl 18367 df-mgp 18661 df-ur 18673 df-ring 18720 |
This theorem is referenced by: ringsrg 18760 gsummulc1 18777 gsummulc2 18778 gsumdixp 18780 psrmulcllem 19560 psrlidm 19576 psrridm 19577 psrass1 19578 psrdi 19579 psrdir 19580 psrcom 19582 mplmonmul 19637 mplcoe1 19638 evlslem2 19685 evlslem1 19688 psropprmul 19781 coe1mul2 19812 coe1fzgsumdlem 19844 gsumsmonply1 19846 gsummoncoe1 19847 lply1binom 19849 evls1gsumadd 19862 evl1gsumdlem 19893 gsumfsum 19986 nn0srg 19989 rge0srg 19990 regsumsupp 20141 ip2di 20159 frlmphl 20293 mamucl 20380 mamuass 20381 mamudi 20382 mamudir 20383 mat1dimmul 20455 dmatmul 20476 mavmulcl 20526 mavmulass 20528 mdetleib2 20567 mdetf 20574 mdetrlin 20581 mdetralt 20587 m2detleib 20610 madugsum 20622 smadiadetlem3lem2 20646 smadiadet 20649 mat2pmatmul 20709 m2pmfzgsumcl 20726 decpmatmul 20750 pmatcollpw1 20754 pmatcollpwfi 20760 pmatcollpw3fi1lem1 20764 pm2mpcl 20775 mply1topmatcl 20783 mp2pm2mplem2 20785 mp2pm2mplem4 20787 mp2pm2mp 20789 pm2mpghm 20794 pm2mpmhmlem2 20797 pm2mp 20803 chfacfscmulgsum 20838 chfacfpmmulgsum 20842 cpmadugsumlemF 20854 cpmadugsumfi 20855 cayhamlem4 20866 tdeglem1 23988 tdeglem3 23989 tdeglem4 23990 plypf1 24138 taylfvallem 24282 taylf 24285 tayl0 24286 taylpfval 24289 jensenlem1 24883 jensenlem2 24884 jensen 24885 amgm 24887 ofldchr 30094 mdetpmtr1 30169 matunitlindflem1 33687 lfladdcl 34830 ply1mulgsum 42657 amgmwlem 43030 |
Copyright terms: Public domain | W3C validator |