![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ringccofval | Structured version Visualization version GIF version |
Description: Composition in the category of unital rings. (Contributed by AV, 14-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
Ref | Expression |
---|---|
ringcco.c | ⊢ 𝐶 = (RingCat‘𝑈) |
ringcco.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
ringcco.o | ⊢ · = (comp‘𝐶) |
Ref | Expression |
---|---|
ringccofval | ⊢ (𝜑 → · = (comp‘(ExtStrCat‘𝑈))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringcco.c | . . . 4 ⊢ 𝐶 = (RingCat‘𝑈) | |
2 | ringcco.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
3 | eqid 2771 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
4 | 1, 3, 2 | ringcbas 42539 | . . . 4 ⊢ (𝜑 → (Base‘𝐶) = (𝑈 ∩ Ring)) |
5 | eqid 2771 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
6 | 1, 3, 2, 5 | ringchomfval 42540 | . . . 4 ⊢ (𝜑 → (Hom ‘𝐶) = ( RingHom ↾ ((Base‘𝐶) × (Base‘𝐶)))) |
7 | 1, 2, 4, 6 | ringcval 42536 | . . 3 ⊢ (𝜑 → 𝐶 = ((ExtStrCat‘𝑈) ↾cat (Hom ‘𝐶))) |
8 | 7 | fveq2d 6336 | . 2 ⊢ (𝜑 → (comp‘𝐶) = (comp‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝐶)))) |
9 | ringcco.o | . . 3 ⊢ · = (comp‘𝐶) | |
10 | 9 | a1i 11 | . 2 ⊢ (𝜑 → · = (comp‘𝐶)) |
11 | eqid 2771 | . . 3 ⊢ ((ExtStrCat‘𝑈) ↾cat (Hom ‘𝐶)) = ((ExtStrCat‘𝑈) ↾cat (Hom ‘𝐶)) | |
12 | eqid 2771 | . . 3 ⊢ (Base‘(ExtStrCat‘𝑈)) = (Base‘(ExtStrCat‘𝑈)) | |
13 | fvexd 6344 | . . 3 ⊢ (𝜑 → (ExtStrCat‘𝑈) ∈ V) | |
14 | 4, 6 | rhmresfn 42537 | . . 3 ⊢ (𝜑 → (Hom ‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) |
15 | inss1 3981 | . . . . 5 ⊢ (𝑈 ∩ Ring) ⊆ 𝑈 | |
16 | 15 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑈 ∩ Ring) ⊆ 𝑈) |
17 | eqid 2771 | . . . . . 6 ⊢ (ExtStrCat‘𝑈) = (ExtStrCat‘𝑈) | |
18 | 17, 2 | estrcbas 16972 | . . . . 5 ⊢ (𝜑 → 𝑈 = (Base‘(ExtStrCat‘𝑈))) |
19 | 18 | eqcomd 2777 | . . . 4 ⊢ (𝜑 → (Base‘(ExtStrCat‘𝑈)) = 𝑈) |
20 | 16, 4, 19 | 3sstr4d 3797 | . . 3 ⊢ (𝜑 → (Base‘𝐶) ⊆ (Base‘(ExtStrCat‘𝑈))) |
21 | eqid 2771 | . . 3 ⊢ (comp‘(ExtStrCat‘𝑈)) = (comp‘(ExtStrCat‘𝑈)) | |
22 | 11, 12, 13, 14, 20, 21 | rescco 16699 | . 2 ⊢ (𝜑 → (comp‘(ExtStrCat‘𝑈)) = (comp‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝐶)))) |
23 | 8, 10, 22 | 3eqtr4d 2815 | 1 ⊢ (𝜑 → · = (comp‘(ExtStrCat‘𝑈))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 Vcvv 3351 ∩ cin 3722 ⊆ wss 3723 ‘cfv 6031 (class class class)co 6793 Basecbs 16064 Hom chom 16160 compcco 16161 ↾cat cresc 16675 ExtStrCatcestrc 16969 Ringcrg 18755 RingCatcringc 42531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-oadd 7717 df-er 7896 df-map 8011 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-2 11281 df-3 11282 df-4 11283 df-5 11284 df-6 11285 df-7 11286 df-8 11287 df-9 11288 df-n0 11495 df-z 11580 df-dec 11696 df-uz 11889 df-fz 12534 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-hom 16174 df-cco 16175 df-0g 16310 df-resc 16678 df-estrc 16970 df-mhm 17543 df-ghm 17866 df-mgp 18698 df-ur 18710 df-ring 18757 df-rnghom 18925 df-ringc 42533 |
This theorem is referenced by: ringcco 42545 |
Copyright terms: Public domain | W3C validator |