![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ringacl | Structured version Visualization version GIF version |
Description: Closure of the addition operation of a ring. (Contributed by Mario Carneiro, 14-Jan-2014.) |
Ref | Expression |
---|---|
ringacl.b | ⊢ 𝐵 = (Base‘𝑅) |
ringacl.p | ⊢ + = (+g‘𝑅) |
Ref | Expression |
---|---|
ringacl | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringgrp 18773 | . 2 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
2 | ringacl.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
3 | ringacl.p | . . 3 ⊢ + = (+g‘𝑅) | |
4 | 2, 3 | grpcl 17652 | . 2 ⊢ ((𝑅 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
5 | 1, 4 | syl3an1 1167 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1072 = wceq 1632 ∈ wcel 2140 ‘cfv 6050 (class class class)co 6815 Basecbs 16080 +gcplusg 16164 Grpcgrp 17644 Ringcrg 18768 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-nul 4942 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ral 3056 df-rex 3057 df-rab 3060 df-v 3343 df-sbc 3578 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-br 4806 df-iota 6013 df-fv 6058 df-ov 6818 df-mgm 17464 df-sgrp 17506 df-mnd 17517 df-grp 17647 df-ring 18770 |
This theorem is referenced by: ringcom 18800 ringlghm 18825 ringrghm 18826 imasring 18840 qusring2 18841 cntzsubr 19035 srngadd 19080 issrngd 19084 lmodprop2d 19148 prdslmodd 19192 psrlmod 19624 mpfind 19759 coe1add 19857 ip2subdi 20212 mat1ghm 20512 scmatghm 20562 mdetrlin2 20636 mdetunilem5 20645 cpmatacl 20744 mdegaddle 24054 deg1addle2 24082 deg1add 24083 ply1divex 24116 dvhlveclem 36918 baerlem3lem1 37517 mendlmod 38284 cznrng 42484 lmod1lem3 42807 |
Copyright terms: Public domain | W3C validator |