MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rimrcl Structured version   Visualization version   GIF version

Theorem rimrcl 18946
Description: Reverse closure for an isomorphism of rings. (Contributed by AV, 22-Oct-2019.)
Assertion
Ref Expression
rimrcl (𝐹 ∈ (𝑅 RingIso 𝑆) → (𝑅 ∈ V ∧ 𝑆 ∈ V))

Proof of Theorem rimrcl
Dummy variables 𝑓 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rngiso 18938 . 2 RingIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RingHom 𝑠) ∣ 𝑓 ∈ (𝑠 RingHom 𝑟)})
21elmpt2cl 7042 1 (𝐹 ∈ (𝑅 RingIso 𝑆) → (𝑅 ∈ V ∧ 𝑆 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wcel 2139  {crab 3054  Vcvv 3340  ccnv 5265  (class class class)co 6814   RingHom crh 18934   RingIso crs 18935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-xp 5272  df-dm 5276  df-iota 6012  df-fv 6057  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-rngiso 18938
This theorem is referenced by:  rimf1o  18956  rimrhm  18957  brric2  18967
  Copyright terms: Public domain W3C validator