Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rim0to0 Structured version   Visualization version   GIF version

Theorem rim0to0 18965
 Description: A ring isomorphism maps the zero of one ring (and only the zero) to the zero of the other ring. (Contributed by AV, 24-Oct-2019.)
Hypotheses
Ref Expression
f1rhm0to0.a 𝐴 = (Base‘𝑅)
f1rhm0to0.b 𝐵 = (Base‘𝑆)
f1rhm0to0.n 𝑁 = (0g𝑆)
f1rhm0to0.0 0 = (0g𝑅)
Assertion
Ref Expression
rim0to0 ((𝐹 ∈ (𝑅 RingIso 𝑆) ∧ 𝑋𝐴) → ((𝐹𝑋) = 𝑁𝑋 = 0 ))

Proof of Theorem rim0to0
StepHypRef Expression
1 f1rhm0to0.a . . . . . 6 𝐴 = (Base‘𝑅)
2 f1rhm0to0.b . . . . . 6 𝐵 = (Base‘𝑆)
31, 2rimrhm 18958 . . . . 5 (𝐹 ∈ (𝑅 RingIso 𝑆) → 𝐹 ∈ (𝑅 RingHom 𝑆))
41, 2rimf1o 18957 . . . . . 6 (𝐹 ∈ (𝑅 RingIso 𝑆) → 𝐹:𝐴1-1-onto𝐵)
5 f1of1 6299 . . . . . 6 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴1-1𝐵)
64, 5syl 17 . . . . 5 (𝐹 ∈ (𝑅 RingIso 𝑆) → 𝐹:𝐴1-1𝐵)
73, 6jca 555 . . . 4 (𝐹 ∈ (𝑅 RingIso 𝑆) → (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴1-1𝐵))
87anim1i 593 . . 3 ((𝐹 ∈ (𝑅 RingIso 𝑆) ∧ 𝑋𝐴) → ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) ∧ 𝑋𝐴))
9 df-3an 1074 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴1-1𝐵𝑋𝐴) ↔ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) ∧ 𝑋𝐴))
108, 9sylibr 224 . 2 ((𝐹 ∈ (𝑅 RingIso 𝑆) ∧ 𝑋𝐴) → (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴1-1𝐵𝑋𝐴))
11 f1rhm0to0.n . . 3 𝑁 = (0g𝑆)
12 f1rhm0to0.0 . . 3 0 = (0g𝑅)
131, 2, 11, 12f1rhm0to0 18963 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴1-1𝐵𝑋𝐴) → ((𝐹𝑋) = 𝑁𝑋 = 0 ))
1410, 13syl 17 1 ((𝐹 ∈ (𝑅 RingIso 𝑆) ∧ 𝑋𝐴) → ((𝐹𝑋) = 𝑁𝑋 = 0 ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2140  –1-1→wf1 6047  –1-1-onto→wf1o 6049  ‘cfv 6050  (class class class)co 6815  Basecbs 16080  0gc0g 16323   RingHom crh 18935   RingIso crs 18936 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-er 7914  df-map 8028  df-en 8125  df-dom 8126  df-sdom 8127  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-nn 11234  df-2 11292  df-ndx 16083  df-slot 16084  df-base 16086  df-sets 16087  df-plusg 16177  df-0g 16325  df-mgm 17464  df-sgrp 17506  df-mnd 17517  df-mhm 17557  df-grp 17647  df-ghm 17880  df-mgp 18711  df-ur 18723  df-ring 18770  df-rnghom 18938  df-rngiso 18939 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator