![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rim0to0 | Structured version Visualization version GIF version |
Description: A ring isomorphism maps the zero of one ring (and only the zero) to the zero of the other ring. (Contributed by AV, 24-Oct-2019.) |
Ref | Expression |
---|---|
f1rhm0to0.a | ⊢ 𝐴 = (Base‘𝑅) |
f1rhm0to0.b | ⊢ 𝐵 = (Base‘𝑆) |
f1rhm0to0.n | ⊢ 𝑁 = (0g‘𝑆) |
f1rhm0to0.0 | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
rim0to0 | ⊢ ((𝐹 ∈ (𝑅 RingIso 𝑆) ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = 𝑁 ↔ 𝑋 = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1rhm0to0.a | . . . . . 6 ⊢ 𝐴 = (Base‘𝑅) | |
2 | f1rhm0to0.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑆) | |
3 | 1, 2 | rimrhm 18958 | . . . . 5 ⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) → 𝐹 ∈ (𝑅 RingHom 𝑆)) |
4 | 1, 2 | rimf1o 18957 | . . . . . 6 ⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) → 𝐹:𝐴–1-1-onto→𝐵) |
5 | f1of1 6299 | . . . . . 6 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–1-1→𝐵) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) → 𝐹:𝐴–1-1→𝐵) |
7 | 3, 6 | jca 555 | . . . 4 ⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) → (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵)) |
8 | 7 | anim1i 593 | . . 3 ⊢ ((𝐹 ∈ (𝑅 RingIso 𝑆) ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵) ∧ 𝑋 ∈ 𝐴)) |
9 | df-3an 1074 | . . 3 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) ↔ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵) ∧ 𝑋 ∈ 𝐴)) | |
10 | 8, 9 | sylibr 224 | . 2 ⊢ ((𝐹 ∈ (𝑅 RingIso 𝑆) ∧ 𝑋 ∈ 𝐴) → (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴)) |
11 | f1rhm0to0.n | . . 3 ⊢ 𝑁 = (0g‘𝑆) | |
12 | f1rhm0to0.0 | . . 3 ⊢ 0 = (0g‘𝑅) | |
13 | 1, 2, 11, 12 | f1rhm0to0 18963 | . 2 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = 𝑁 ↔ 𝑋 = 0 )) |
14 | 10, 13 | syl 17 | 1 ⊢ ((𝐹 ∈ (𝑅 RingIso 𝑆) ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = 𝑁 ↔ 𝑋 = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2140 –1-1→wf1 6047 –1-1-onto→wf1o 6049 ‘cfv 6050 (class class class)co 6815 Basecbs 16080 0gc0g 16323 RingHom crh 18935 RingIso crs 18936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-er 7914 df-map 8028 df-en 8125 df-dom 8126 df-sdom 8127 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-nn 11234 df-2 11292 df-ndx 16083 df-slot 16084 df-base 16086 df-sets 16087 df-plusg 16177 df-0g 16325 df-mgm 17464 df-sgrp 17506 df-mnd 17517 df-mhm 17557 df-grp 17647 df-ghm 17880 df-mgp 18711 df-ur 18723 df-ring 18770 df-rnghom 18938 df-rngiso 18939 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |