![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rhmsubclem3 | Structured version Visualization version GIF version |
Description: Lemma 3 for rhmsubc 42608. (Contributed by AV, 2-Mar-2020.) |
Ref | Expression |
---|---|
rngcrescrhm.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
rngcrescrhm.c | ⊢ 𝐶 = (RngCat‘𝑈) |
rngcrescrhm.r | ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) |
rngcrescrhm.h | ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) |
Ref | Expression |
---|---|
rhmsubclem3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → ((Id‘(RngCat‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngcrescrhm.r | . . . . . 6 ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) | |
2 | 1 | eleq2d 2835 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑅 ↔ 𝑥 ∈ (Ring ∩ 𝑈))) |
3 | elinel1 3948 | . . . . 5 ⊢ (𝑥 ∈ (Ring ∩ 𝑈) → 𝑥 ∈ Ring) | |
4 | 2, 3 | syl6bi 243 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑅 → 𝑥 ∈ Ring)) |
5 | 4 | imp 393 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → 𝑥 ∈ Ring) |
6 | eqid 2770 | . . . 4 ⊢ (Base‘𝑥) = (Base‘𝑥) | |
7 | 6 | idrhm 18940 | . . 3 ⊢ (𝑥 ∈ Ring → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥)) |
8 | 5, 7 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥)) |
9 | rngcrescrhm.c | . . 3 ⊢ 𝐶 = (RngCat‘𝑈) | |
10 | eqid 2770 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
11 | 9 | eqcomi 2779 | . . . 4 ⊢ (RngCat‘𝑈) = 𝐶 |
12 | 11 | fveq2i 6335 | . . 3 ⊢ (Id‘(RngCat‘𝑈)) = (Id‘𝐶) |
13 | rngcrescrhm.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
14 | 13 | adantr 466 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → 𝑈 ∈ 𝑉) |
15 | incom 3954 | . . . . . 6 ⊢ (Ring ∩ 𝑈) = (𝑈 ∩ Ring) | |
16 | ringssrng 42398 | . . . . . . 7 ⊢ Ring ⊆ Rng | |
17 | sslin 3985 | . . . . . . 7 ⊢ (Ring ⊆ Rng → (𝑈 ∩ Ring) ⊆ (𝑈 ∩ Rng)) | |
18 | 16, 17 | mp1i 13 | . . . . . 6 ⊢ (𝜑 → (𝑈 ∩ Ring) ⊆ (𝑈 ∩ Rng)) |
19 | 15, 18 | syl5eqss 3796 | . . . . 5 ⊢ (𝜑 → (Ring ∩ 𝑈) ⊆ (𝑈 ∩ Rng)) |
20 | 9, 10, 13 | rngcbas 42483 | . . . . 5 ⊢ (𝜑 → (Base‘𝐶) = (𝑈 ∩ Rng)) |
21 | 19, 1, 20 | 3sstr4d 3795 | . . . 4 ⊢ (𝜑 → 𝑅 ⊆ (Base‘𝐶)) |
22 | 21 | sselda 3750 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → 𝑥 ∈ (Base‘𝐶)) |
23 | 9, 10, 12, 14, 22, 6 | rngcid 42497 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → ((Id‘(RngCat‘𝑈))‘𝑥) = ( I ↾ (Base‘𝑥))) |
24 | rngcrescrhm.h | . . . 4 ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) | |
25 | 13, 9, 1, 24 | rhmsubclem2 42605 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅 ∧ 𝑥 ∈ 𝑅) → (𝑥𝐻𝑥) = (𝑥 RingHom 𝑥)) |
26 | 25 | 3anidm23 1530 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → (𝑥𝐻𝑥) = (𝑥 RingHom 𝑥)) |
27 | 8, 23, 26 | 3eltr4d 2864 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → ((Id‘(RngCat‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1630 ∈ wcel 2144 ∩ cin 3720 ⊆ wss 3721 I cid 5156 × cxp 5247 ↾ cres 5251 ‘cfv 6031 (class class class)co 6792 Basecbs 16063 Idccid 16532 Ringcrg 18754 RingHom crh 18921 Rngcrng 42392 RngCatcrngc 42475 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-fal 1636 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-1st 7314 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-oadd 7716 df-er 7895 df-map 8010 df-pm 8011 df-ixp 8062 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-nn 11222 df-2 11280 df-3 11281 df-4 11282 df-5 11283 df-6 11284 df-7 11285 df-8 11286 df-9 11287 df-n0 11494 df-z 11579 df-dec 11695 df-uz 11888 df-fz 12533 df-struct 16065 df-ndx 16066 df-slot 16067 df-base 16069 df-sets 16070 df-ress 16071 df-plusg 16161 df-hom 16173 df-cco 16174 df-0g 16309 df-cat 16535 df-cid 16536 df-homf 16537 df-ssc 16676 df-resc 16677 df-subc 16678 df-estrc 16969 df-mgm 17449 df-sgrp 17491 df-mnd 17502 df-mhm 17542 df-grp 17632 df-minusg 17633 df-ghm 17865 df-cmn 18401 df-abl 18402 df-mgp 18697 df-ur 18709 df-ring 18756 df-rnghom 18924 df-mgmhm 42297 df-rng0 42393 df-rnghomo 42405 df-rngc 42477 |
This theorem is referenced by: rhmsubc 42608 |
Copyright terms: Public domain | W3C validator |