![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rhmsubcALTVlem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for rhmsubcALTV 42636. (Contributed by AV, 2-Mar-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rngcrescrhmALTV.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
rngcrescrhmALTV.c | ⊢ 𝐶 = (RngCatALTV‘𝑈) |
rngcrescrhmALTV.r | ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) |
rngcrescrhmALTV.h | ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) |
Ref | Expression |
---|---|
rhmsubcALTVlem1 | ⊢ (𝜑 → 𝐻 Fn (𝑅 × 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2771 | . . 3 ⊢ (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅 ↦ ((𝑥 GrpHom 𝑦) ∩ ((mulGrp‘𝑥) MndHom (mulGrp‘𝑦)))) = (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅 ↦ ((𝑥 GrpHom 𝑦) ∩ ((mulGrp‘𝑥) MndHom (mulGrp‘𝑦)))) | |
2 | ovex 6823 | . . . 4 ⊢ (𝑥 GrpHom 𝑦) ∈ V | |
3 | 2 | inex1 4933 | . . 3 ⊢ ((𝑥 GrpHom 𝑦) ∩ ((mulGrp‘𝑥) MndHom (mulGrp‘𝑦))) ∈ V |
4 | 1, 3 | fnmpt2i 7389 | . 2 ⊢ (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅 ↦ ((𝑥 GrpHom 𝑦) ∩ ((mulGrp‘𝑥) MndHom (mulGrp‘𝑦)))) Fn (𝑅 × 𝑅) |
5 | rngcrescrhmALTV.h | . . . . 5 ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) | |
6 | 5 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝑅 × 𝑅))) |
7 | dfrhm2 18927 | . . . . . 6 ⊢ RingHom = (𝑥 ∈ Ring, 𝑦 ∈ Ring ↦ ((𝑥 GrpHom 𝑦) ∩ ((mulGrp‘𝑥) MndHom (mulGrp‘𝑦)))) | |
8 | 7 | a1i 11 | . . . . 5 ⊢ (𝜑 → RingHom = (𝑥 ∈ Ring, 𝑦 ∈ Ring ↦ ((𝑥 GrpHom 𝑦) ∩ ((mulGrp‘𝑥) MndHom (mulGrp‘𝑦))))) |
9 | 8 | reseq1d 5533 | . . . 4 ⊢ (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) = ((𝑥 ∈ Ring, 𝑦 ∈ Ring ↦ ((𝑥 GrpHom 𝑦) ∩ ((mulGrp‘𝑥) MndHom (mulGrp‘𝑦)))) ↾ (𝑅 × 𝑅))) |
10 | rngcrescrhmALTV.r | . . . . . 6 ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) | |
11 | inss1 3981 | . . . . . 6 ⊢ (Ring ∩ 𝑈) ⊆ Ring | |
12 | 10, 11 | syl6eqss 3804 | . . . . 5 ⊢ (𝜑 → 𝑅 ⊆ Ring) |
13 | resmpt2 6905 | . . . . 5 ⊢ ((𝑅 ⊆ Ring ∧ 𝑅 ⊆ Ring) → ((𝑥 ∈ Ring, 𝑦 ∈ Ring ↦ ((𝑥 GrpHom 𝑦) ∩ ((mulGrp‘𝑥) MndHom (mulGrp‘𝑦)))) ↾ (𝑅 × 𝑅)) = (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅 ↦ ((𝑥 GrpHom 𝑦) ∩ ((mulGrp‘𝑥) MndHom (mulGrp‘𝑦))))) | |
14 | 12, 12, 13 | syl2anc 573 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ Ring, 𝑦 ∈ Ring ↦ ((𝑥 GrpHom 𝑦) ∩ ((mulGrp‘𝑥) MndHom (mulGrp‘𝑦)))) ↾ (𝑅 × 𝑅)) = (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅 ↦ ((𝑥 GrpHom 𝑦) ∩ ((mulGrp‘𝑥) MndHom (mulGrp‘𝑦))))) |
15 | 6, 9, 14 | 3eqtrd 2809 | . . 3 ⊢ (𝜑 → 𝐻 = (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅 ↦ ((𝑥 GrpHom 𝑦) ∩ ((mulGrp‘𝑥) MndHom (mulGrp‘𝑦))))) |
16 | 15 | fneq1d 6121 | . 2 ⊢ (𝜑 → (𝐻 Fn (𝑅 × 𝑅) ↔ (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅 ↦ ((𝑥 GrpHom 𝑦) ∩ ((mulGrp‘𝑥) MndHom (mulGrp‘𝑦)))) Fn (𝑅 × 𝑅))) |
17 | 4, 16 | mpbiri 248 | 1 ⊢ (𝜑 → 𝐻 Fn (𝑅 × 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 ∩ cin 3722 ⊆ wss 3723 × cxp 5247 ↾ cres 5251 Fn wfn 6026 ‘cfv 6031 (class class class)co 6793 ↦ cmpt2 6795 MndHom cmhm 17541 GrpHom cghm 17865 mulGrpcmgp 18697 Ringcrg 18755 RingHom crh 18922 RngCatALTVcrngcALTV 42486 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-er 7896 df-map 8011 df-en 8110 df-dom 8111 df-sdom 8112 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-2 11281 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-plusg 16162 df-0g 16310 df-mhm 17543 df-ghm 17866 df-mgp 18698 df-ur 18710 df-ring 18757 df-rnghom 18925 |
This theorem is referenced by: rhmsubcALTV 42636 |
Copyright terms: Public domain | W3C validator |