Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rhmima Structured version   Visualization version   GIF version

Theorem rhmima 19020
 Description: The homomorphic image of a subring is a subring. (Contributed by Stefan O'Rear, 10-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.)
Assertion
Ref Expression
rhmima ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑋 ∈ (SubRing‘𝑀)) → (𝐹𝑋) ∈ (SubRing‘𝑁))

Proof of Theorem rhmima
StepHypRef Expression
1 rhmghm 18934 . . 3 (𝐹 ∈ (𝑀 RingHom 𝑁) → 𝐹 ∈ (𝑀 GrpHom 𝑁))
2 subrgsubg 18995 . . 3 (𝑋 ∈ (SubRing‘𝑀) → 𝑋 ∈ (SubGrp‘𝑀))
3 ghmima 17888 . . 3 ((𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝑋 ∈ (SubGrp‘𝑀)) → (𝐹𝑋) ∈ (SubGrp‘𝑁))
41, 2, 3syl2an 575 . 2 ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑋 ∈ (SubRing‘𝑀)) → (𝐹𝑋) ∈ (SubGrp‘𝑁))
5 eqid 2770 . . . 4 (mulGrp‘𝑀) = (mulGrp‘𝑀)
6 eqid 2770 . . . 4 (mulGrp‘𝑁) = (mulGrp‘𝑁)
75, 6rhmmhm 18931 . . 3 (𝐹 ∈ (𝑀 RingHom 𝑁) → 𝐹 ∈ ((mulGrp‘𝑀) MndHom (mulGrp‘𝑁)))
85subrgsubm 19002 . . 3 (𝑋 ∈ (SubRing‘𝑀) → 𝑋 ∈ (SubMnd‘(mulGrp‘𝑀)))
9 mhmima 17570 . . 3 ((𝐹 ∈ ((mulGrp‘𝑀) MndHom (mulGrp‘𝑁)) ∧ 𝑋 ∈ (SubMnd‘(mulGrp‘𝑀))) → (𝐹𝑋) ∈ (SubMnd‘(mulGrp‘𝑁)))
107, 8, 9syl2an 575 . 2 ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑋 ∈ (SubRing‘𝑀)) → (𝐹𝑋) ∈ (SubMnd‘(mulGrp‘𝑁)))
11 rhmrcl2 18929 . . . 4 (𝐹 ∈ (𝑀 RingHom 𝑁) → 𝑁 ∈ Ring)
1211adantr 466 . . 3 ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑋 ∈ (SubRing‘𝑀)) → 𝑁 ∈ Ring)
136issubrg3 19017 . . 3 (𝑁 ∈ Ring → ((𝐹𝑋) ∈ (SubRing‘𝑁) ↔ ((𝐹𝑋) ∈ (SubGrp‘𝑁) ∧ (𝐹𝑋) ∈ (SubMnd‘(mulGrp‘𝑁)))))
1412, 13syl 17 . 2 ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑋 ∈ (SubRing‘𝑀)) → ((𝐹𝑋) ∈ (SubRing‘𝑁) ↔ ((𝐹𝑋) ∈ (SubGrp‘𝑁) ∧ (𝐹𝑋) ∈ (SubMnd‘(mulGrp‘𝑁)))))
154, 10, 14mpbir2and 684 1 ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑋 ∈ (SubRing‘𝑀)) → (𝐹𝑋) ∈ (SubRing‘𝑁))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 382   ∈ wcel 2144   “ cima 5252  ‘cfv 6031  (class class class)co 6792   MndHom cmhm 17540  SubMndcsubmnd 17541  SubGrpcsubg 17795   GrpHom cghm 17864  mulGrpcmgp 18696  Ringcrg 18754   RingHom crh 18921  SubRingcsubrg 18985 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-map 8010  df-en 8109  df-dom 8110  df-sdom 8111  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-3 11281  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-mulr 16162  df-0g 16309  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-mhm 17542  df-submnd 17543  df-grp 17632  df-minusg 17633  df-subg 17798  df-ghm 17865  df-mgp 18697  df-ur 18709  df-ring 18756  df-rnghom 18924  df-subrg 18987 This theorem is referenced by:  mpfsubrg  19746  pf1subrg  19926  plypf1  24187
 Copyright terms: Public domain W3C validator