![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rhmf | Structured version Visualization version GIF version |
Description: A ring homomorphism is a function. (Contributed by Stefan O'Rear, 8-Mar-2015.) |
Ref | Expression |
---|---|
rhmf.b | ⊢ 𝐵 = (Base‘𝑅) |
rhmf.c | ⊢ 𝐶 = (Base‘𝑆) |
Ref | Expression |
---|---|
rhmf | ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:𝐵⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rhmghm 18935 | . 2 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) | |
2 | rhmf.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
3 | rhmf.c | . . 3 ⊢ 𝐶 = (Base‘𝑆) | |
4 | 2, 3 | ghmf 17872 | . 2 ⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝐹:𝐵⟶𝐶) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:𝐵⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 ⟶wf 6027 ‘cfv 6031 (class class class)co 6793 Basecbs 16064 GrpHom cghm 17865 RingHom crh 18922 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-er 7896 df-map 8011 df-en 8110 df-dom 8111 df-sdom 8112 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-2 11281 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-plusg 16162 df-0g 16310 df-mhm 17543 df-ghm 17866 df-mgp 18698 df-ur 18710 df-ring 18757 df-rnghom 18925 |
This theorem is referenced by: rhmf1o 18942 kerf1hrm 18953 srngf1o 19064 evlslem6 19728 evlslem3 19729 evlslem1 19730 evlseu 19731 mpfconst 19745 mpfproj 19746 mpfsubrg 19747 mpfind 19751 evls1val 19900 evls1sca 19903 evl1val 19908 fveval1fvcl 19912 evl1addd 19920 evl1subd 19921 evl1muld 19922 evl1expd 19924 pf1const 19925 pf1id 19926 pf1subrg 19927 mpfpf1 19930 pf1mpf 19931 pf1ind 19934 mulgrhm2 20062 chrrhm 20094 domnchr 20095 znf1o 20115 znidomb 20125 ply1remlem 24142 ply1rem 24143 fta1glem1 24145 fta1glem2 24146 fta1g 24147 fta1blem 24148 plypf1 24188 dchrzrhmul 25192 lgsqrlem1 25292 lgsqrlem2 25293 lgsqrlem3 25294 lgseisenlem3 25323 lgseisenlem4 25324 rhmdvdsr 30158 rhmopp 30159 rhmdvd 30161 kerunit 30163 mdetlap 30238 pl1cn 30341 zrhunitpreima 30362 elzrhunit 30363 qqhval2lem 30365 qqhf 30370 qqhghm 30372 qqhrhm 30373 qqhnm 30374 idomrootle 38299 elringchom 42542 rhmsscmap2 42547 rhmsscmap 42548 rhmsubcsetclem2 42550 rhmsubcrngclem2 42556 ringcsect 42559 ringcinv 42560 funcringcsetc 42563 funcringcsetcALTV2lem8 42571 funcringcsetcALTV2lem9 42572 elringchomALTV 42577 ringcinvALTV 42584 funcringcsetclem8ALTV 42594 funcringcsetclem9ALTV 42595 zrtermoringc 42598 rhmsubclem4 42617 |
Copyright terms: Public domain | W3C validator |