![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rhmco | Structured version Visualization version GIF version |
Description: The composition of ring homomorphisms is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.) |
Ref | Expression |
---|---|
rhmco | ⊢ ((𝐹 ∈ (𝑇 RingHom 𝑈) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 RingHom 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rhmrcl2 18930 | . . 3 ⊢ (𝐹 ∈ (𝑇 RingHom 𝑈) → 𝑈 ∈ Ring) | |
2 | rhmrcl1 18929 | . . 3 ⊢ (𝐺 ∈ (𝑆 RingHom 𝑇) → 𝑆 ∈ Ring) | |
3 | 1, 2 | anim12ci 601 | . 2 ⊢ ((𝐹 ∈ (𝑇 RingHom 𝑈) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → (𝑆 ∈ Ring ∧ 𝑈 ∈ Ring)) |
4 | rhmghm 18935 | . . . 4 ⊢ (𝐹 ∈ (𝑇 RingHom 𝑈) → 𝐹 ∈ (𝑇 GrpHom 𝑈)) | |
5 | rhmghm 18935 | . . . 4 ⊢ (𝐺 ∈ (𝑆 RingHom 𝑇) → 𝐺 ∈ (𝑆 GrpHom 𝑇)) | |
6 | ghmco 17888 | . . . 4 ⊢ ((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈)) | |
7 | 4, 5, 6 | syl2an 583 | . . 3 ⊢ ((𝐹 ∈ (𝑇 RingHom 𝑈) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈)) |
8 | eqid 2771 | . . . . 5 ⊢ (mulGrp‘𝑇) = (mulGrp‘𝑇) | |
9 | eqid 2771 | . . . . 5 ⊢ (mulGrp‘𝑈) = (mulGrp‘𝑈) | |
10 | 8, 9 | rhmmhm 18932 | . . . 4 ⊢ (𝐹 ∈ (𝑇 RingHom 𝑈) → 𝐹 ∈ ((mulGrp‘𝑇) MndHom (mulGrp‘𝑈))) |
11 | eqid 2771 | . . . . 5 ⊢ (mulGrp‘𝑆) = (mulGrp‘𝑆) | |
12 | 11, 8 | rhmmhm 18932 | . . . 4 ⊢ (𝐺 ∈ (𝑆 RingHom 𝑇) → 𝐺 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇))) |
13 | mhmco 17570 | . . . 4 ⊢ ((𝐹 ∈ ((mulGrp‘𝑇) MndHom (mulGrp‘𝑈)) ∧ 𝐺 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇))) → (𝐹 ∘ 𝐺) ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈))) | |
14 | 10, 12, 13 | syl2an 583 | . . 3 ⊢ ((𝐹 ∈ (𝑇 RingHom 𝑈) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈))) |
15 | 7, 14 | jca 501 | . 2 ⊢ ((𝐹 ∈ (𝑇 RingHom 𝑈) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → ((𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈) ∧ (𝐹 ∘ 𝐺) ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈)))) |
16 | 11, 9 | isrhm 18931 | . 2 ⊢ ((𝐹 ∘ 𝐺) ∈ (𝑆 RingHom 𝑈) ↔ ((𝑆 ∈ Ring ∧ 𝑈 ∈ Ring) ∧ ((𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈) ∧ (𝐹 ∘ 𝐺) ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈))))) |
17 | 3, 15, 16 | sylanbrc 572 | 1 ⊢ ((𝐹 ∈ (𝑇 RingHom 𝑈) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 RingHom 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∈ wcel 2145 ∘ ccom 5253 ‘cfv 6031 (class class class)co 6793 MndHom cmhm 17541 GrpHom cghm 17865 mulGrpcmgp 18697 Ringcrg 18755 RingHom crh 18922 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-er 7896 df-map 8011 df-en 8110 df-dom 8111 df-sdom 8112 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-2 11281 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-plusg 16162 df-0g 16310 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-mhm 17543 df-grp 17633 df-ghm 17866 df-mgp 18698 df-ur 18710 df-ring 18757 df-rnghom 18925 |
This theorem is referenced by: evls1rhm 19902 evl1rhm 19911 chrrhm 20094 rhmsubcsetclem2 42550 rhmsubcrngclem2 42556 funcringcsetcALTV2lem9 42572 ringccatidALTV 42580 funcringcsetclem9ALTV 42595 rhmsubclem4 42617 rhmsubcALTVlem4 42635 |
Copyright terms: Public domain | W3C validator |