![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rgrprop | Structured version Visualization version GIF version |
Description: The properties of a k-regular graph. (Contributed by Alexander van der Vekens, 8-Jul-2018.) (Revised by AV, 26-Dec-2020.) |
Ref | Expression |
---|---|
isrgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
isrgr.d | ⊢ 𝐷 = (VtxDeg‘𝐺) |
Ref | Expression |
---|---|
rgrprop | ⊢ (𝐺RegGraph𝐾 → (𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rgr 26584 | . . . 4 ⊢ RegGraph = {〈𝑔, 𝑘〉 ∣ (𝑘 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 𝑘)} | |
2 | 1 | breqi 4766 | . . 3 ⊢ (𝐺RegGraph𝐾 ↔ 𝐺{〈𝑔, 𝑘〉 ∣ (𝑘 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 𝑘)}𝐾) |
3 | brabv 6816 | . . 3 ⊢ (𝐺{〈𝑔, 𝑘〉 ∣ (𝑘 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 𝑘)}𝐾 → (𝐺 ∈ V ∧ 𝐾 ∈ V)) | |
4 | 2, 3 | sylbi 207 | . 2 ⊢ (𝐺RegGraph𝐾 → (𝐺 ∈ V ∧ 𝐾 ∈ V)) |
5 | isrgr.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
6 | isrgr.d | . . . 4 ⊢ 𝐷 = (VtxDeg‘𝐺) | |
7 | 5, 6 | isrgr 26586 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝐾 ∈ V) → (𝐺RegGraph𝐾 ↔ (𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾))) |
8 | 7 | biimpd 219 | . 2 ⊢ ((𝐺 ∈ V ∧ 𝐾 ∈ V) → (𝐺RegGraph𝐾 → (𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾))) |
9 | 4, 8 | mpcom 38 | 1 ⊢ (𝐺RegGraph𝐾 → (𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1596 ∈ wcel 2103 ∀wral 3014 Vcvv 3304 class class class wbr 4760 {copab 4820 ‘cfv 6001 ℕ0*cxnn0 11476 Vtxcvtx 25994 VtxDegcvtxdg 26492 RegGraphcrgr 26582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pr 5011 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-ral 3019 df-rex 3020 df-rab 3023 df-v 3306 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-sn 4286 df-pr 4288 df-op 4292 df-uni 4545 df-br 4761 df-opab 4821 df-iota 5964 df-fv 6009 df-rgr 26584 |
This theorem is referenced by: rusgrprop0 26594 uhgr0edg0rgrb 26601 frrusgrord 27416 |
Copyright terms: Public domain | W3C validator |