![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rgen2a | Structured version Visualization version GIF version |
Description: Generalization rule for restricted quantification. Note that 𝑥 and 𝑦 are not required to be disjoint. This proof illustrates the use of dvelim 2368. (Contributed by NM, 23-Nov-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 1-Jan-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
rgen2a.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝜑) |
Ref | Expression |
---|---|
rgen2a | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2718 | . . . . . 6 ⊢ (𝑧 = 𝑥 → (𝑧 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) | |
2 | 1 | dvelimv 2369 | . . . . 5 ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → (𝑥 ∈ 𝐴 → ∀𝑦 𝑥 ∈ 𝐴)) |
3 | rgen2a.1 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝜑) | |
4 | 3 | ex 449 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐴 → 𝜑)) |
5 | 4 | alimi 1779 | . . . . 5 ⊢ (∀𝑦 𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝐴 → 𝜑)) |
6 | 2, 5 | syl6com 37 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (¬ ∀𝑦 𝑦 = 𝑥 → ∀𝑦(𝑦 ∈ 𝐴 → 𝜑))) |
7 | eleq1 2718 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) | |
8 | 7 | biimpd 219 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝐴 → 𝑥 ∈ 𝐴)) |
9 | 8, 4 | syli 39 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝐴 → 𝜑)) |
10 | 9 | alimi 1779 | . . . 4 ⊢ (∀𝑦 𝑦 = 𝑥 → ∀𝑦(𝑦 ∈ 𝐴 → 𝜑)) |
11 | 6, 10 | pm2.61d2 172 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝐴 → 𝜑)) |
12 | df-ral 2946 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 𝜑 ↔ ∀𝑦(𝑦 ∈ 𝐴 → 𝜑)) | |
13 | 11, 12 | sylibr 224 | . 2 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐴 𝜑) |
14 | 13 | rgen 2951 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 ∀wal 1521 ∈ wcel 2030 ∀wral 2941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-cleq 2644 df-clel 2647 df-ral 2946 |
This theorem is referenced by: sosn 5222 isoid 6619 f1owe 6643 ordon 7024 fnwelem 7337 issmo 7490 oawordeulem 7679 ecopover 7894 unfilem2 8266 dffi2 8370 inficl 8372 fipwuni 8373 fisn 8374 dffi3 8378 cantnfvalf 8600 r111 8676 alephf1 8946 alephiso 8959 dfac5lem4 8987 kmlem9 9018 ackbij1lem17 9096 fin1a2lem2 9261 fin1a2lem4 9263 axcc2lem 9296 nqereu 9789 addpqf 9804 mulpqf 9806 genpdm 9862 axaddf 10004 axmulf 10005 subf 10321 mulnzcnopr 10711 negiso 11041 cnref1o 11865 xaddf 12093 xmulf 12140 ioof 12309 om2uzf1oi 12792 om2uzisoi 12793 wwlktovf1 13746 reeff1 14894 divalglem9 15171 bitsf1 15215 gcdf 15281 eucalgf 15343 qredeu 15419 1arith 15678 vdwapf 15723 catideu 16383 sscres 16530 fpwipodrs 17211 letsr 17274 mgmidmo 17306 frmdplusg 17438 nmznsg 17685 efgred 18207 isabli 18253 brric 18792 xrsmgm 19829 xrs1cmn 19834 xrge0subm 19835 xrsds 19837 cnsubmlem 19842 cnsubrglem 19844 nn0srg 19864 rge0srg 19865 fibas 20829 fctop 20856 cctop 20858 iccordt 21066 fsubbas 21718 zfbas 21747 ismeti 22177 dscmet 22424 qtopbaslem 22609 tgqioo 22650 xrsxmet 22659 xrsdsre 22660 retopconn 22679 iccconn 22680 iimulcn 22784 icopnfhmeo 22789 iccpnfhmeo 22791 xrhmeo 22792 iundisj2 23363 reefiso 24247 recosf1o 24326 rzgrp 24345 ercgrg 25457 2wspmdisj 27317 isabloi 27533 cncph 27802 hvsubf 28000 hhip 28162 hhph 28163 helch 28228 hsn0elch 28233 hhssabloilem 28246 hhshsslem2 28253 shscli 28304 shintcli 28316 pjmf1 28703 idunop 28965 idhmop 28969 0hmop 28970 adj0 28981 lnopunii 28999 lnophmi 29005 riesz4i 29050 cnlnadjlem9 29062 adjcoi 29087 bra11 29095 pjhmopi 29133 iundisj2f 29529 iundisj2fi 29684 xrstos 29807 xrge0omnd 29839 reofld 29968 xrge0slmod 29972 iistmd 30076 cnre2csqima 30085 mndpluscn 30100 raddcn 30103 xrge0iifiso 30109 xrge0iifmhm 30113 xrge0pluscn 30114 br2base 30459 sxbrsiga 30480 signswmnd 30762 indispconn 31342 ioosconn 31355 soseq 31879 f1omptsnlem 33313 isbasisrelowl 33336 poimirlem27 33566 exidu1 33785 rngoideu 33832 isomliN 34844 idlaut 35700 mzpclall 37607 kelac2lem 37951 clsk1indlem3 38658 icof 39725 prmdvdsfmtnof1 41824 sprsymrelf1 42071 uspgrsprf1 42080 plusfreseq 42097 nnsgrpmgm 42141 nnsgrp 42142 2zrngamgm 42264 2zrngmmgm 42271 |
Copyright terms: Public domain | W3C validator |