![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rgen2 | Structured version Visualization version GIF version |
Description: Generalization rule for restricted quantification, with two quantifiers. (Contributed by NM, 30-May-1999.) |
Ref | Expression |
---|---|
rgen2.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) |
Ref | Expression |
---|---|
rgen2 | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rgen2.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) | |
2 | 1 | ralrimiva 3104 | . 2 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝜑) |
3 | 2 | rgen 3060 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 2139 ∀wral 3050 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ral 3055 |
This theorem is referenced by: rgen3 3114 invdisjrab 4791 f1stres 7358 f2ndres 7359 smobeth 9620 wrd2ind 13697 smupf 15422 xpsff1o 16450 efgmf 18346 efglem 18349 txuni2 21590 divcn 22892 abscncf 22925 recncf 22926 imcncf 22927 cjcncf 22928 cnllycmp 22976 bndth 22978 dyadf 23579 cxpcn3 24709 sgmf 25091 2lgslem1b 25337 smcnlem 27882 helch 28430 hsn0elch 28435 hhshsslem2 28455 shscli 28506 shintcli 28518 0cnop 29168 0cnfn 29169 idcnop 29170 lnophsi 29190 nlelshi 29249 cnlnadjlem6 29261 cnzh 30344 rezh 30345 cnllysconn 31555 rellysconn 31561 fneref 32672 dnicn 32809 mblfinlem1 33777 mblfinlem2 33778 frmx 37998 frmy 37999 fmtnof1 41975 2zrngnmrid 42478 ldepslinc 42826 |
Copyright terms: Public domain | W3C validator |