MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rge0srg Structured version   Visualization version   GIF version

Theorem rge0srg 20011
Description: The nonnegative real numbers form a semiring (commutative by subcmn 18434). (Contributed by Thierry Arnoux, 6-Sep-2018.)
Assertion
Ref Expression
rge0srg (ℂflds (0[,)+∞)) ∈ SRing

Proof of Theorem rge0srg
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnring 19962 . . . 4 fld ∈ Ring
2 ringcmn 18773 . . . 4 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
31, 2ax-mp 5 . . 3 fld ∈ CMnd
4 rege0subm 19996 . . 3 (0[,)+∞) ∈ (SubMnd‘ℂfld)
5 eqid 2752 . . . 4 (ℂflds (0[,)+∞)) = (ℂflds (0[,)+∞))
65submcmn 18435 . . 3 ((ℂfld ∈ CMnd ∧ (0[,)+∞) ∈ (SubMnd‘ℂfld)) → (ℂflds (0[,)+∞)) ∈ CMnd)
73, 4, 6mp2an 710 . 2 (ℂflds (0[,)+∞)) ∈ CMnd
8 rge0ssre 12465 . . . . 5 (0[,)+∞) ⊆ ℝ
9 ax-resscn 10177 . . . . 5 ℝ ⊆ ℂ
108, 9sstri 3745 . . . 4 (0[,)+∞) ⊆ ℂ
11 1re 10223 . . . . 5 1 ∈ ℝ
12 0le1 10735 . . . . 5 0 ≤ 1
13 ltpnf 12139 . . . . . 6 (1 ∈ ℝ → 1 < +∞)
1411, 13ax-mp 5 . . . . 5 1 < +∞
15 0re 10224 . . . . . 6 0 ∈ ℝ
16 pnfxr 10276 . . . . . 6 +∞ ∈ ℝ*
17 elico2 12422 . . . . . 6 ((0 ∈ ℝ ∧ +∞ ∈ ℝ*) → (1 ∈ (0[,)+∞) ↔ (1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 < +∞)))
1815, 16, 17mp2an 710 . . . . 5 (1 ∈ (0[,)+∞) ↔ (1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 < +∞))
1911, 12, 14, 18mpbir3an 1424 . . . 4 1 ∈ (0[,)+∞)
20 ge0mulcl 12470 . . . . 5 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 · 𝑦) ∈ (0[,)+∞))
2120rgen2a 3107 . . . 4 𝑥 ∈ (0[,)+∞)∀𝑦 ∈ (0[,)+∞)(𝑥 · 𝑦) ∈ (0[,)+∞)
22 eqid 2752 . . . . . 6 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
2322ringmgp 18745 . . . . 5 (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd)
24 cnfldbas 19944 . . . . . . 7 ℂ = (Base‘ℂfld)
2522, 24mgpbas 18687 . . . . . 6 ℂ = (Base‘(mulGrp‘ℂfld))
26 cnfld1 19965 . . . . . . 7 1 = (1r‘ℂfld)
2722, 26ringidval 18695 . . . . . 6 1 = (0g‘(mulGrp‘ℂfld))
28 cnfldmul 19946 . . . . . . 7 · = (.r‘ℂfld)
2922, 28mgpplusg 18685 . . . . . 6 · = (+g‘(mulGrp‘ℂfld))
3025, 27, 29issubm 17540 . . . . 5 ((mulGrp‘ℂfld) ∈ Mnd → ((0[,)+∞) ∈ (SubMnd‘(mulGrp‘ℂfld)) ↔ ((0[,)+∞) ⊆ ℂ ∧ 1 ∈ (0[,)+∞) ∧ ∀𝑥 ∈ (0[,)+∞)∀𝑦 ∈ (0[,)+∞)(𝑥 · 𝑦) ∈ (0[,)+∞))))
311, 23, 30mp2b 10 . . . 4 ((0[,)+∞) ∈ (SubMnd‘(mulGrp‘ℂfld)) ↔ ((0[,)+∞) ⊆ ℂ ∧ 1 ∈ (0[,)+∞) ∧ ∀𝑥 ∈ (0[,)+∞)∀𝑦 ∈ (0[,)+∞)(𝑥 · 𝑦) ∈ (0[,)+∞)))
3210, 19, 21, 31mpbir3an 1424 . . 3 (0[,)+∞) ∈ (SubMnd‘(mulGrp‘ℂfld))
33 eqid 2752 . . . 4 ((mulGrp‘ℂfld) ↾s (0[,)+∞)) = ((mulGrp‘ℂfld) ↾s (0[,)+∞))
3433submmnd 17547 . . 3 ((0[,)+∞) ∈ (SubMnd‘(mulGrp‘ℂfld)) → ((mulGrp‘ℂfld) ↾s (0[,)+∞)) ∈ Mnd)
3532, 34ax-mp 5 . 2 ((mulGrp‘ℂfld) ↾s (0[,)+∞)) ∈ Mnd
36 simpll 807 . . . . . . . . 9 (((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) ∧ 𝑧 ∈ (0[,)+∞)) → 𝑥 ∈ (0[,)+∞))
3710, 36sseldi 3734 . . . . . . . 8 (((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) ∧ 𝑧 ∈ (0[,)+∞)) → 𝑥 ∈ ℂ)
38 simplr 809 . . . . . . . . 9 (((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) ∧ 𝑧 ∈ (0[,)+∞)) → 𝑦 ∈ (0[,)+∞))
3910, 38sseldi 3734 . . . . . . . 8 (((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) ∧ 𝑧 ∈ (0[,)+∞)) → 𝑦 ∈ ℂ)
40 simpr 479 . . . . . . . . 9 (((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) ∧ 𝑧 ∈ (0[,)+∞)) → 𝑧 ∈ (0[,)+∞))
4110, 40sseldi 3734 . . . . . . . 8 (((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) ∧ 𝑧 ∈ (0[,)+∞)) → 𝑧 ∈ ℂ)
4237, 39, 41adddid 10248 . . . . . . 7 (((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) ∧ 𝑧 ∈ (0[,)+∞)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))
4337, 39, 41adddird 10249 . . . . . . 7 (((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) ∧ 𝑧 ∈ (0[,)+∞)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
4442, 43jca 555 . . . . . 6 (((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) ∧ 𝑧 ∈ (0[,)+∞)) → ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))
4544ralrimiva 3096 . . . . 5 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → ∀𝑧 ∈ (0[,)+∞)((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))
4645ralrimiva 3096 . . . 4 (𝑥 ∈ (0[,)+∞) → ∀𝑦 ∈ (0[,)+∞)∀𝑧 ∈ (0[,)+∞)((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))
4710sseli 3732 . . . . 5 (𝑥 ∈ (0[,)+∞) → 𝑥 ∈ ℂ)
4847mul02d 10418 . . . 4 (𝑥 ∈ (0[,)+∞) → (0 · 𝑥) = 0)
4947mul01d 10419 . . . 4 (𝑥 ∈ (0[,)+∞) → (𝑥 · 0) = 0)
5046, 48, 49jca32 559 . . 3 (𝑥 ∈ (0[,)+∞) → (∀𝑦 ∈ (0[,)+∞)∀𝑧 ∈ (0[,)+∞)((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ ((0 · 𝑥) = 0 ∧ (𝑥 · 0) = 0)))
5150rgen 3052 . 2 𝑥 ∈ (0[,)+∞)(∀𝑦 ∈ (0[,)+∞)∀𝑧 ∈ (0[,)+∞)((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ ((0 · 𝑥) = 0 ∧ (𝑥 · 0) = 0))
525, 24ressbas2 16125 . . . 4 ((0[,)+∞) ⊆ ℂ → (0[,)+∞) = (Base‘(ℂflds (0[,)+∞))))
5310, 52ax-mp 5 . . 3 (0[,)+∞) = (Base‘(ℂflds (0[,)+∞)))
54 cnfldex 19943 . . . 4 fld ∈ V
55 ovex 6833 . . . 4 (0[,)+∞) ∈ V
565, 22mgpress 18692 . . . 4 ((ℂfld ∈ V ∧ (0[,)+∞) ∈ V) → ((mulGrp‘ℂfld) ↾s (0[,)+∞)) = (mulGrp‘(ℂflds (0[,)+∞))))
5754, 55, 56mp2an 710 . . 3 ((mulGrp‘ℂfld) ↾s (0[,)+∞)) = (mulGrp‘(ℂflds (0[,)+∞)))
58 cnfldadd 19945 . . . . 5 + = (+g‘ℂfld)
595, 58ressplusg 16187 . . . 4 ((0[,)+∞) ∈ V → + = (+g‘(ℂflds (0[,)+∞))))
6055, 59ax-mp 5 . . 3 + = (+g‘(ℂflds (0[,)+∞)))
615, 28ressmulr 16200 . . . 4 ((0[,)+∞) ∈ V → · = (.r‘(ℂflds (0[,)+∞))))
6255, 61ax-mp 5 . . 3 · = (.r‘(ℂflds (0[,)+∞)))
63 ringmnd 18748 . . . . 5 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
641, 63ax-mp 5 . . . 4 fld ∈ Mnd
65 0e0icopnf 12467 . . . 4 0 ∈ (0[,)+∞)
66 cnfld0 19964 . . . . 5 0 = (0g‘ℂfld)
675, 24, 66ress0g 17512 . . . 4 ((ℂfld ∈ Mnd ∧ 0 ∈ (0[,)+∞) ∧ (0[,)+∞) ⊆ ℂ) → 0 = (0g‘(ℂflds (0[,)+∞))))
6864, 65, 10, 67mp3an 1565 . . 3 0 = (0g‘(ℂflds (0[,)+∞)))
6953, 57, 60, 62, 68issrg 18699 . 2 ((ℂflds (0[,)+∞)) ∈ SRing ↔ ((ℂflds (0[,)+∞)) ∈ CMnd ∧ ((mulGrp‘ℂfld) ↾s (0[,)+∞)) ∈ Mnd ∧ ∀𝑥 ∈ (0[,)+∞)(∀𝑦 ∈ (0[,)+∞)∀𝑧 ∈ (0[,)+∞)((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ ((0 · 𝑥) = 0 ∧ (𝑥 · 0) = 0))))
707, 35, 51, 69mpbir3an 1424 1 (ℂflds (0[,)+∞)) ∈ SRing
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383  w3a 1072   = wceq 1624  wcel 2131  wral 3042  Vcvv 3332  wss 3707   class class class wbr 4796  cfv 6041  (class class class)co 6805  cc 10118  cr 10119  0cc0 10120  1c1 10121   + caddc 10123   · cmul 10125  +∞cpnf 10255  *cxr 10257   < clt 10258  cle 10259  [,)cico 12362  Basecbs 16051  s cress 16052  +gcplusg 16135  .rcmulr 16136  0gc0g 16294  Mndcmnd 17487  SubMndcsubmnd 17527  CMndccmn 18385  mulGrpcmgp 18681  SRingcsrg 18697  Ringcrg 18739  fldccnfld 19940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197  ax-addf 10199  ax-mulf 10200
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-oadd 7725  df-er 7903  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-nn 11205  df-2 11263  df-3 11264  df-4 11265  df-5 11266  df-6 11267  df-7 11268  df-8 11269  df-9 11270  df-n0 11477  df-z 11562  df-dec 11678  df-uz 11872  df-ico 12366  df-fz 12512  df-struct 16053  df-ndx 16054  df-slot 16055  df-base 16057  df-sets 16058  df-ress 16059  df-plusg 16148  df-mulr 16149  df-starv 16150  df-tset 16154  df-ple 16155  df-ds 16158  df-unif 16159  df-0g 16296  df-mgm 17435  df-sgrp 17477  df-mnd 17488  df-submnd 17529  df-grp 17618  df-minusg 17619  df-cmn 18387  df-abl 18388  df-mgp 18682  df-ur 18694  df-srg 18698  df-ring 18741  df-cring 18742  df-cnfld 19941
This theorem is referenced by:  xrge0slmod  30145  sge0tsms  41092
  Copyright terms: Public domain W3C validator