Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rge0scvg Structured version   Visualization version   GIF version

Theorem rge0scvg 30123
Description: Implication of convergence for a nonnegative series. This could be used to shorten prmreclem6 15672. (Contributed by Thierry Arnoux, 28-Jul-2017.)
Assertion
Ref Expression
rge0scvg ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → sup(ran seq1( + , 𝐹), ℝ, < ) ∈ ℝ)

Proof of Theorem rge0scvg
Dummy variables 𝑗 𝑘 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 11761 . . . . 5 ℕ = (ℤ‘1)
2 1zzd 11446 . . . . 5 (𝐹:ℕ⟶(0[,)+∞) → 1 ∈ ℤ)
3 rge0ssre 12318 . . . . . . 7 (0[,)+∞) ⊆ ℝ
4 fss 6094 . . . . . . 7 ((𝐹:ℕ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → 𝐹:ℕ⟶ℝ)
53, 4mpan2 707 . . . . . 6 (𝐹:ℕ⟶(0[,)+∞) → 𝐹:ℕ⟶ℝ)
65ffvelrnda 6399 . . . . 5 ((𝐹:ℕ⟶(0[,)+∞) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℝ)
71, 2, 6serfre 12870 . . . 4 (𝐹:ℕ⟶(0[,)+∞) → seq1( + , 𝐹):ℕ⟶ℝ)
8 frn 6091 . . . 4 (seq1( + , 𝐹):ℕ⟶ℝ → ran seq1( + , 𝐹) ⊆ ℝ)
97, 8syl 17 . . 3 (𝐹:ℕ⟶(0[,)+∞) → ran seq1( + , 𝐹) ⊆ ℝ)
109adantr 480 . 2 ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → ran seq1( + , 𝐹) ⊆ ℝ)
11 1nn 11069 . . . . 5 1 ∈ ℕ
12 fdm 6089 . . . . 5 (seq1( + , 𝐹):ℕ⟶ℝ → dom seq1( + , 𝐹) = ℕ)
1311, 12syl5eleqr 2737 . . . 4 (seq1( + , 𝐹):ℕ⟶ℝ → 1 ∈ dom seq1( + , 𝐹))
14 ne0i 3954 . . . . 5 (1 ∈ dom seq1( + , 𝐹) → dom seq1( + , 𝐹) ≠ ∅)
15 dm0rn0 5374 . . . . . 6 (dom seq1( + , 𝐹) = ∅ ↔ ran seq1( + , 𝐹) = ∅)
1615necon3bii 2875 . . . . 5 (dom seq1( + , 𝐹) ≠ ∅ ↔ ran seq1( + , 𝐹) ≠ ∅)
1714, 16sylib 208 . . . 4 (1 ∈ dom seq1( + , 𝐹) → ran seq1( + , 𝐹) ≠ ∅)
187, 13, 173syl 18 . . 3 (𝐹:ℕ⟶(0[,)+∞) → ran seq1( + , 𝐹) ≠ ∅)
1918adantr 480 . 2 ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → ran seq1( + , 𝐹) ≠ ∅)
20 1zzd 11446 . . . . 5 ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → 1 ∈ ℤ)
21 climdm 14329 . . . . . . 7 (seq1( + , 𝐹) ∈ dom ⇝ ↔ seq1( + , 𝐹) ⇝ ( ⇝ ‘seq1( + , 𝐹)))
2221biimpi 206 . . . . . 6 (seq1( + , 𝐹) ∈ dom ⇝ → seq1( + , 𝐹) ⇝ ( ⇝ ‘seq1( + , 𝐹)))
2322adantl 481 . . . . 5 ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → seq1( + , 𝐹) ⇝ ( ⇝ ‘seq1( + , 𝐹)))
247adantr 480 . . . . . 6 ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → seq1( + , 𝐹):ℕ⟶ℝ)
2524ffvelrnda 6399 . . . . 5 (((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → (seq1( + , 𝐹)‘𝑘) ∈ ℝ)
261, 20, 23, 25climrecl 14358 . . . 4 ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → ( ⇝ ‘seq1( + , 𝐹)) ∈ ℝ)
27 simpr 476 . . . . . 6 (((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
2823adantr 480 . . . . . 6 (((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → seq1( + , 𝐹) ⇝ ( ⇝ ‘seq1( + , 𝐹)))
29 simplll 813 . . . . . . 7 ((((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → 𝐹:ℕ⟶(0[,)+∞))
30 ffvelrn 6397 . . . . . . . 8 ((𝐹:ℕ⟶(0[,)+∞) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ (0[,)+∞))
313, 30sseldi 3634 . . . . . . 7 ((𝐹:ℕ⟶(0[,)+∞) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℝ)
3229, 31sylancom 702 . . . . . 6 ((((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℝ)
33 elrege0 12316 . . . . . . . . . 10 ((𝐹𝑗) ∈ (0[,)+∞) ↔ ((𝐹𝑗) ∈ ℝ ∧ 0 ≤ (𝐹𝑗)))
3433simprbi 479 . . . . . . . . 9 ((𝐹𝑗) ∈ (0[,)+∞) → 0 ≤ (𝐹𝑗))
3530, 34syl 17 . . . . . . . 8 ((𝐹:ℕ⟶(0[,)+∞) ∧ 𝑗 ∈ ℕ) → 0 ≤ (𝐹𝑗))
3635adantlr 751 . . . . . . 7 (((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 0 ≤ (𝐹𝑗))
3736adantlr 751 . . . . . 6 ((((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → 0 ≤ (𝐹𝑗))
381, 27, 28, 32, 37climserle 14437 . . . . 5 (((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → (seq1( + , 𝐹)‘𝑘) ≤ ( ⇝ ‘seq1( + , 𝐹)))
3938ralrimiva 2995 . . . 4 ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ ( ⇝ ‘seq1( + , 𝐹)))
40 breq2 4689 . . . . . 6 (𝑥 = ( ⇝ ‘seq1( + , 𝐹)) → ((seq1( + , 𝐹)‘𝑘) ≤ 𝑥 ↔ (seq1( + , 𝐹)‘𝑘) ≤ ( ⇝ ‘seq1( + , 𝐹))))
4140ralbidv 3015 . . . . 5 (𝑥 = ( ⇝ ‘seq1( + , 𝐹)) → (∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥 ↔ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ ( ⇝ ‘seq1( + , 𝐹))))
4241rspcev 3340 . . . 4 ((( ⇝ ‘seq1( + , 𝐹)) ∈ ℝ ∧ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ ( ⇝ ‘seq1( + , 𝐹))) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥)
4326, 39, 42syl2anc 694 . . 3 ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥)
44 ffn 6083 . . . . . 6 (seq1( + , 𝐹):ℕ⟶ℝ → seq1( + , 𝐹) Fn ℕ)
45 breq1 4688 . . . . . . 7 (𝑧 = (seq1( + , 𝐹)‘𝑘) → (𝑧𝑥 ↔ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥))
4645ralrn 6402 . . . . . 6 (seq1( + , 𝐹) Fn ℕ → (∀𝑧 ∈ ran seq1( + , 𝐹)𝑧𝑥 ↔ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥))
477, 44, 463syl 18 . . . . 5 (𝐹:ℕ⟶(0[,)+∞) → (∀𝑧 ∈ ran seq1( + , 𝐹)𝑧𝑥 ↔ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥))
4847rexbidv 3081 . . . 4 (𝐹:ℕ⟶(0[,)+∞) → (∃𝑥 ∈ ℝ ∀𝑧 ∈ ran seq1( + , 𝐹)𝑧𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥))
4948adantr 480 . . 3 ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → (∃𝑥 ∈ ℝ ∀𝑧 ∈ ran seq1( + , 𝐹)𝑧𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥))
5043, 49mpbird 247 . 2 ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran seq1( + , 𝐹)𝑧𝑥)
51 suprcl 11021 . 2 ((ran seq1( + , 𝐹) ⊆ ℝ ∧ ran seq1( + , 𝐹) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran seq1( + , 𝐹)𝑧𝑥) → sup(ran seq1( + , 𝐹), ℝ, < ) ∈ ℝ)
5210, 19, 50, 51syl3anc 1366 1 ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → sup(ran seq1( + , 𝐹), ℝ, < ) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  wss 3607  c0 3948   class class class wbr 4685  dom cdm 5143  ran crn 5144   Fn wfn 5921  wf 5922  cfv 5926  (class class class)co 6690  supcsup 8387  cr 9973  0cc0 9974  1c1 9975   + caddc 9977  +∞cpnf 10109   < clt 10112  cle 10113  cn 11058  [,)cico 12215  seqcseq 12841  cli 14259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-ico 12219  df-fz 12365  df-fl 12633  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-rlim 14264
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator