Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rfovd Structured version   Visualization version   GIF version

Theorem rfovd 38814
Description: Value of the operator, (𝐴𝑂𝐵), which maps between relations and functions for relations between base sets, 𝐴 and 𝐵. (Contributed by RP, 25-Apr-2021.)
Hypotheses
Ref Expression
rfovd.rf 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥𝑎 ↦ {𝑦𝑏𝑥𝑟𝑦})))
rfovd.a (𝜑𝐴𝑉)
rfovd.b (𝜑𝐵𝑊)
Assertion
Ref Expression
rfovd (𝜑 → (𝐴𝑂𝐵) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ (𝑥𝐴 ↦ {𝑦𝐵𝑥𝑟𝑦})))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑟   𝑥,𝐴,𝑎,𝑏   𝐵,𝑎,𝑏,𝑟   𝑥,𝐵   𝑦,𝐵,𝑎,𝑏   𝜑,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑟)   𝐴(𝑦)   𝑂(𝑥,𝑦,𝑟,𝑎,𝑏)   𝑉(𝑥,𝑦,𝑟,𝑎,𝑏)   𝑊(𝑥,𝑦,𝑟,𝑎,𝑏)

Proof of Theorem rfovd
StepHypRef Expression
1 rfovd.rf . . 3 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥𝑎 ↦ {𝑦𝑏𝑥𝑟𝑦})))
21a1i 11 . 2 (𝜑𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥𝑎 ↦ {𝑦𝑏𝑥𝑟𝑦}))))
3 xpeq12 5274 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑎 × 𝑏) = (𝐴 × 𝐵))
43pweqd 4300 . . . 4 ((𝑎 = 𝐴𝑏 = 𝐵) → 𝒫 (𝑎 × 𝑏) = 𝒫 (𝐴 × 𝐵))
5 simpl 468 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → 𝑎 = 𝐴)
6 rabeq 3341 . . . . . 6 (𝑏 = 𝐵 → {𝑦𝑏𝑥𝑟𝑦} = {𝑦𝐵𝑥𝑟𝑦})
76adantl 467 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → {𝑦𝑏𝑥𝑟𝑦} = {𝑦𝐵𝑥𝑟𝑦})
85, 7mpteq12dv 4865 . . . 4 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑥𝑎 ↦ {𝑦𝑏𝑥𝑟𝑦}) = (𝑥𝐴 ↦ {𝑦𝐵𝑥𝑟𝑦}))
94, 8mpteq12dv 4865 . . 3 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥𝑎 ↦ {𝑦𝑏𝑥𝑟𝑦})) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ (𝑥𝐴 ↦ {𝑦𝐵𝑥𝑟𝑦})))
109adantl 467 . 2 ((𝜑 ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥𝑎 ↦ {𝑦𝑏𝑥𝑟𝑦})) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ (𝑥𝐴 ↦ {𝑦𝐵𝑥𝑟𝑦})))
11 rfovd.a . . 3 (𝜑𝐴𝑉)
1211elexd 3363 . 2 (𝜑𝐴 ∈ V)
13 rfovd.b . . 3 (𝜑𝐵𝑊)
1413elexd 3363 . 2 (𝜑𝐵 ∈ V)
15 xpexg 7106 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝐴 × 𝐵) ∈ V)
1611, 13, 15syl2anc 565 . . 3 (𝜑 → (𝐴 × 𝐵) ∈ V)
17 pwexg 4978 . . 3 ((𝐴 × 𝐵) ∈ V → 𝒫 (𝐴 × 𝐵) ∈ V)
18 mptexg 6627 . . 3 (𝒫 (𝐴 × 𝐵) ∈ V → (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ (𝑥𝐴 ↦ {𝑦𝐵𝑥𝑟𝑦})) ∈ V)
1916, 17, 183syl 18 . 2 (𝜑 → (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ (𝑥𝐴 ↦ {𝑦𝐵𝑥𝑟𝑦})) ∈ V)
202, 10, 12, 14, 19ovmpt2d 6934 1 (𝜑 → (𝐴𝑂𝐵) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ (𝑥𝐴 ↦ {𝑦𝐵𝑥𝑟𝑦})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1630  wcel 2144  {crab 3064  Vcvv 3349  𝒫 cpw 4295   class class class wbr 4784  cmpt 4861   × cxp 5247  (class class class)co 6792  cmpt2 6794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6795  df-oprab 6796  df-mpt2 6797
This theorem is referenced by:  rfovfvd  38815  rfovcnvf1od  38817  fsovrfovd  38822
  Copyright terms: Public domain W3C validator