Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexzrexnn0 Structured version   Visualization version   GIF version

Theorem rexzrexnn0 37887
Description: Rewrite a quantification over integers into a quantification over naturals. (Contributed by Stefan O'Rear, 11-Oct-2014.)
Hypotheses
Ref Expression
rexzrexnn0.1 (𝑥 = 𝑦 → (𝜑𝜓))
rexzrexnn0.2 (𝑥 = -𝑦 → (𝜑𝜒))
Assertion
Ref Expression
rexzrexnn0 (∃𝑥 ∈ ℤ 𝜑 ↔ ∃𝑦 ∈ ℕ0 (𝜓𝜒))
Distinct variable groups:   𝜑,𝑦   𝜓,𝑥   𝜒,𝑥   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)

Proof of Theorem rexzrexnn0
StepHypRef Expression
1 elznn0 11593 . . . . . . 7 (𝑥 ∈ ℤ ↔ (𝑥 ∈ ℝ ∧ (𝑥 ∈ ℕ0 ∨ -𝑥 ∈ ℕ0)))
21simprbi 478 . . . . . 6 (𝑥 ∈ ℤ → (𝑥 ∈ ℕ0 ∨ -𝑥 ∈ ℕ0))
32adantr 466 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝜑) → (𝑥 ∈ ℕ0 ∨ -𝑥 ∈ ℕ0))
4 simpr 471 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ 𝜑) ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0)
5 simplr 744 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ 𝜑) ∧ 𝑥 ∈ ℕ0) → 𝜑)
6 rexzrexnn0.1 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝜑𝜓))
76equcoms 2104 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝜑𝜓))
87bicomd 213 . . . . . . . . 9 (𝑦 = 𝑥 → (𝜓𝜑))
98rspcev 3458 . . . . . . . 8 ((𝑥 ∈ ℕ0𝜑) → ∃𝑦 ∈ ℕ0 𝜓)
104, 5, 9syl2anc 565 . . . . . . 7 (((𝑥 ∈ ℤ ∧ 𝜑) ∧ 𝑥 ∈ ℕ0) → ∃𝑦 ∈ ℕ0 𝜓)
1110ex 397 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝜑) → (𝑥 ∈ ℕ0 → ∃𝑦 ∈ ℕ0 𝜓))
12 simpr 471 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ -𝑥 ∈ ℕ0) → -𝑥 ∈ ℕ0)
13 zcn 11583 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
1413negnegd 10584 . . . . . . . . . . . . . 14 (𝑥 ∈ ℤ → --𝑥 = 𝑥)
1514eqcomd 2776 . . . . . . . . . . . . 13 (𝑥 ∈ ℤ → 𝑥 = --𝑥)
16 negeq 10474 . . . . . . . . . . . . . 14 (𝑦 = -𝑥 → -𝑦 = --𝑥)
1716eqeq2d 2780 . . . . . . . . . . . . 13 (𝑦 = -𝑥 → (𝑥 = -𝑦𝑥 = --𝑥))
1815, 17syl5ibrcom 237 . . . . . . . . . . . 12 (𝑥 ∈ ℤ → (𝑦 = -𝑥𝑥 = -𝑦))
1918imp 393 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → 𝑥 = -𝑦)
20 rexzrexnn0.2 . . . . . . . . . . 11 (𝑥 = -𝑦 → (𝜑𝜒))
2119, 20syl 17 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → (𝜑𝜒))
2221bicomd 213 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → (𝜒𝜑))
2322adantlr 686 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ -𝑥 ∈ ℕ0) ∧ 𝑦 = -𝑥) → (𝜒𝜑))
2412, 23rspcedv 3462 . . . . . . 7 ((𝑥 ∈ ℤ ∧ -𝑥 ∈ ℕ0) → (𝜑 → ∃𝑦 ∈ ℕ0 𝜒))
2524impancom 439 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝜑) → (-𝑥 ∈ ℕ0 → ∃𝑦 ∈ ℕ0 𝜒))
2611, 25orim12d 945 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝜑) → ((𝑥 ∈ ℕ0 ∨ -𝑥 ∈ ℕ0) → (∃𝑦 ∈ ℕ0 𝜓 ∨ ∃𝑦 ∈ ℕ0 𝜒)))
273, 26mpd 15 . . . 4 ((𝑥 ∈ ℤ ∧ 𝜑) → (∃𝑦 ∈ ℕ0 𝜓 ∨ ∃𝑦 ∈ ℕ0 𝜒))
28 r19.43 3240 . . . 4 (∃𝑦 ∈ ℕ0 (𝜓𝜒) ↔ (∃𝑦 ∈ ℕ0 𝜓 ∨ ∃𝑦 ∈ ℕ0 𝜒))
2927, 28sylibr 224 . . 3 ((𝑥 ∈ ℤ ∧ 𝜑) → ∃𝑦 ∈ ℕ0 (𝜓𝜒))
3029rexlimiva 3175 . 2 (∃𝑥 ∈ ℤ 𝜑 → ∃𝑦 ∈ ℕ0 (𝜓𝜒))
31 nn0z 11601 . . . . 5 (𝑦 ∈ ℕ0𝑦 ∈ ℤ)
326rspcev 3458 . . . . 5 ((𝑦 ∈ ℤ ∧ 𝜓) → ∃𝑥 ∈ ℤ 𝜑)
3331, 32sylan 561 . . . 4 ((𝑦 ∈ ℕ0𝜓) → ∃𝑥 ∈ ℤ 𝜑)
34 nn0negz 11616 . . . . 5 (𝑦 ∈ ℕ0 → -𝑦 ∈ ℤ)
3520rspcev 3458 . . . . 5 ((-𝑦 ∈ ℤ ∧ 𝜒) → ∃𝑥 ∈ ℤ 𝜑)
3634, 35sylan 561 . . . 4 ((𝑦 ∈ ℕ0𝜒) → ∃𝑥 ∈ ℤ 𝜑)
3733, 36jaodan 938 . . 3 ((𝑦 ∈ ℕ0 ∧ (𝜓𝜒)) → ∃𝑥 ∈ ℤ 𝜑)
3837rexlimiva 3175 . 2 (∃𝑦 ∈ ℕ0 (𝜓𝜒) → ∃𝑥 ∈ ℤ 𝜑)
3930, 38impbii 199 1 (∃𝑥 ∈ ℤ 𝜑 ↔ ∃𝑦 ∈ ℕ0 (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  wo 826   = wceq 1630  wcel 2144  wrex 3061  cr 10136  -cneg 10468  0cn0 11493  cz 11578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-n0 11494  df-z 11579
This theorem is referenced by:  dvdsrabdioph  37893
  Copyright terms: Public domain W3C validator