![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexxfr | Structured version Visualization version GIF version |
Description: Transfer existence from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 10-Jun-2005.) (Revised by Mario Carneiro, 15-Aug-2014.) |
Ref | Expression |
---|---|
ralxfr.1 | ⊢ (𝑦 ∈ 𝐶 → 𝐴 ∈ 𝐵) |
ralxfr.2 | ⊢ (𝑥 ∈ 𝐵 → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) |
ralxfr.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rexxfr | ⊢ (∃𝑥 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐶 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrex2 3025 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐵 ¬ 𝜑) | |
2 | dfrex2 3025 | . . 3 ⊢ (∃𝑦 ∈ 𝐶 𝜓 ↔ ¬ ∀𝑦 ∈ 𝐶 ¬ 𝜓) | |
3 | ralxfr.1 | . . . 4 ⊢ (𝑦 ∈ 𝐶 → 𝐴 ∈ 𝐵) | |
4 | ralxfr.2 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) | |
5 | ralxfr.3 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
6 | 5 | notbid 307 | . . . 4 ⊢ (𝑥 = 𝐴 → (¬ 𝜑 ↔ ¬ 𝜓)) |
7 | 3, 4, 6 | ralxfr 4916 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 ¬ 𝜑 ↔ ∀𝑦 ∈ 𝐶 ¬ 𝜓) |
8 | 2, 7 | xchbinxr 324 | . 2 ⊢ (∃𝑦 ∈ 𝐶 𝜓 ↔ ¬ ∀𝑥 ∈ 𝐵 ¬ 𝜑) |
9 | 1, 8 | bitr4i 267 | 1 ⊢ (∃𝑥 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐶 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 = wceq 1523 ∈ wcel 2030 ∀wral 2941 ∃wrex 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-v 3233 |
This theorem is referenced by: infm3 11020 reeff1o 24246 moxfr 37572 |
Copyright terms: Public domain | W3C validator |