![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexv | Structured version Visualization version GIF version |
Description: An existential quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004.) |
Ref | Expression |
---|---|
rexv | ⊢ (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 2947 | . 2 ⊢ (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥(𝑥 ∈ V ∧ 𝜑)) | |
2 | vex 3234 | . . . 4 ⊢ 𝑥 ∈ V | |
3 | 2 | biantrur 526 | . . 3 ⊢ (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑)) |
4 | 3 | exbii 1814 | . 2 ⊢ (∃𝑥𝜑 ↔ ∃𝑥(𝑥 ∈ V ∧ 𝜑)) |
5 | 1, 4 | bitr4i 267 | 1 ⊢ (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 ∃wex 1744 ∈ wcel 2030 ∃wrex 2942 Vcvv 3231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-12 2087 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-an 385 df-tru 1526 df-ex 1745 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-rex 2947 df-v 3233 |
This theorem is referenced by: rexcom4 3256 spesbc 3554 exopxfr 5298 dfco2 5672 dfco2a 5673 dffv2 6310 abnex 7007 finacn 8911 ac6s2 9346 ptcmplem3 21905 ustn0 22071 hlimeui 28225 rexcom4f 29445 isrnsigaOLD 30303 isrnsiga 30304 prdstotbnd 33723 ac6s3f 34109 moxfr 37572 eldioph2b 37643 kelac1 37950 relintabex 38204 cbvexsv 39079 sprid 42049 |
Copyright terms: Public domain | W3C validator |