![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexsng | Structured version Visualization version GIF version |
Description: Restricted existential quantification over a singleton. (Contributed by NM, 29-Jan-2012.) |
Ref | Expression |
---|---|
ralsng.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rexsng | ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexsns 4362 | . 2 ⊢ (∃𝑥 ∈ {𝐴}𝜑 ↔ [𝐴 / 𝑥]𝜑) | |
2 | ralsng.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | sbcieg 3610 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) |
4 | 1, 3 | syl5bb 272 | 1 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1632 ∈ wcel 2140 ∃wrex 3052 [wsbc 3577 {csn 4322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-rex 3057 df-v 3343 df-sbc 3578 df-sn 4323 |
This theorem is referenced by: rexsn 4368 rexprg 4380 rextpg 4382 iunxsng 4755 frirr 5244 frsn 5347 imasng 5646 scshwfzeqfzo 13793 dvdsprmpweqnn 15812 mnd1 17553 grp1 17744 1loopgrvd0 26632 1egrvtxdg0 26639 nfrgr2v 27448 1vwmgr 27452 ballotlemfc0 30885 ballotlemfcc 30886 bj-restsn 33360 elpaddat 35612 elpadd2at 35614 brfvidRP 38501 iccelpart 41898 zlidlring 42457 lco0 42745 |
Copyright terms: Public domain | W3C validator |