Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexsb Structured version   Visualization version   GIF version

Theorem rexsb 41489
Description: An equivalent expression for restricted existence, analogous to exsb 2496. (Contributed by Alexander van der Vekens, 1-Jul-2017.)
Assertion
Ref Expression
rexsb (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴𝑥(𝑥 = 𝑦𝜑))
Distinct variable groups:   𝑥,𝑦,𝐴   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rexsb
StepHypRef Expression
1 nfv 1883 . 2 𝑦𝜑
2 nfa1 2068 . 2 𝑥𝑥(𝑥 = 𝑦𝜑)
3 ax12v 2088 . . 3 (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
4 sp 2091 . . . 4 (∀𝑥(𝑥 = 𝑦𝜑) → (𝑥 = 𝑦𝜑))
54com12 32 . . 3 (𝑥 = 𝑦 → (∀𝑥(𝑥 = 𝑦𝜑) → 𝜑))
63, 5impbid 202 . 2 (𝑥 = 𝑦 → (𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑)))
71, 2, 6cbvrex 3198 1 (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴𝑥(𝑥 = 𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wal 1521  wrex 2942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947
This theorem is referenced by:  rexrsb  41490  2rexsb  41491
  Copyright terms: Public domain W3C validator