![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexrnmpt | Structured version Visualization version GIF version |
Description: A restricted quantifier over an image set. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
ralrnmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
ralrnmpt.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rexrnmpt | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (∃𝑦 ∈ ran 𝐹𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrnmpt.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | ralrnmpt.2 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
3 | 2 | notbid 307 | . . . 4 ⊢ (𝑦 = 𝐵 → (¬ 𝜓 ↔ ¬ 𝜒)) |
4 | 1, 3 | ralrnmpt 6531 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (∀𝑦 ∈ ran 𝐹 ¬ 𝜓 ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜒)) |
5 | 4 | notbid 307 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (¬ ∀𝑦 ∈ ran 𝐹 ¬ 𝜓 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜒)) |
6 | dfrex2 3134 | . 2 ⊢ (∃𝑦 ∈ ran 𝐹𝜓 ↔ ¬ ∀𝑦 ∈ ran 𝐹 ¬ 𝜓) | |
7 | dfrex2 3134 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜒 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜒) | |
8 | 5, 6, 7 | 3bitr4g 303 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (∃𝑦 ∈ ran 𝐹𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 = wceq 1632 ∈ wcel 2139 ∀wral 3050 ∃wrex 3051 ↦ cmpt 4881 ran crn 5267 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-fv 6057 |
This theorem is referenced by: onoviun 7609 onnseq 7610 ghmcyg 18497 pgpfac1lem2 18674 pgpfac1lem3 18676 pgpfac1lem4 18677 pptbas 21014 lly1stc 21501 txbas 21572 eltsms 22137 tsmsf1o 22149 psmetutop 22573 xrge0tsms 22838 fmcfil 23270 ellimc2 23840 limcflf 23844 xrge0tsmsd 30094 poimirlem23 33745 poimirlem24 33746 poimirlem30 33752 cntotbnd 33908 |
Copyright terms: Public domain | W3C validator |