MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexrab2 Structured version   Visualization version   GIF version

Theorem rexrab2 3511
Description: Existential quantification over a class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
ralab2.1 (𝑥 = 𝑦 → (𝜓𝜒))
Assertion
Ref Expression
rexrab2 (∃𝑥 ∈ {𝑦𝐴𝜑}𝜓 ↔ ∃𝑦𝐴 (𝜑𝜒))
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝜒,𝑥   𝜑,𝑥   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑥)   𝜒(𝑦)   𝐴(𝑦)

Proof of Theorem rexrab2
StepHypRef Expression
1 df-rab 3055 . . 3 {𝑦𝐴𝜑} = {𝑦 ∣ (𝑦𝐴𝜑)}
21rexeqi 3278 . 2 (∃𝑥 ∈ {𝑦𝐴𝜑}𝜓 ↔ ∃𝑥 ∈ {𝑦 ∣ (𝑦𝐴𝜑)}𝜓)
3 ralab2.1 . . 3 (𝑥 = 𝑦 → (𝜓𝜒))
43rexab2 3510 . 2 (∃𝑥 ∈ {𝑦 ∣ (𝑦𝐴𝜑)}𝜓 ↔ ∃𝑦((𝑦𝐴𝜑) ∧ 𝜒))
5 anass 684 . . . 4 (((𝑦𝐴𝜑) ∧ 𝜒) ↔ (𝑦𝐴 ∧ (𝜑𝜒)))
65exbii 1919 . . 3 (∃𝑦((𝑦𝐴𝜑) ∧ 𝜒) ↔ ∃𝑦(𝑦𝐴 ∧ (𝜑𝜒)))
7 df-rex 3052 . . 3 (∃𝑦𝐴 (𝜑𝜒) ↔ ∃𝑦(𝑦𝐴 ∧ (𝜑𝜒)))
86, 7bitr4i 267 . 2 (∃𝑦((𝑦𝐴𝜑) ∧ 𝜒) ↔ ∃𝑦𝐴 (𝜑𝜒))
92, 4, 83bitri 286 1 (∃𝑥 ∈ {𝑦𝐴𝜑}𝜓 ↔ ∃𝑦𝐴 (𝜑𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  wex 1849  wcel 2135  {cab 2742  wrex 3047  {crab 3050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1631  df-ex 1850  df-nf 1855  df-sb 2043  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-rex 3052  df-rab 3055
This theorem is referenced by:  frminex  5242  sstotbnd3  33884
  Copyright terms: Public domain W3C validator