Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexrab Structured version   Visualization version   GIF version

Theorem rexrab 3403
 Description: Existential quantification over a class abstraction. (Contributed by Jeff Madsen, 17-Jun-2011.) (Revised by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
ralab.1 (𝑦 = 𝑥 → (𝜑𝜓))
Assertion
Ref Expression
rexrab (∃𝑥 ∈ {𝑦𝐴𝜑}𝜒 ↔ ∃𝑥𝐴 (𝜓𝜒))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥)   𝜒(𝑥,𝑦)   𝐴(𝑥)

Proof of Theorem rexrab
StepHypRef Expression
1 ralab.1 . . . . 5 (𝑦 = 𝑥 → (𝜑𝜓))
21elrab 3396 . . . 4 (𝑥 ∈ {𝑦𝐴𝜑} ↔ (𝑥𝐴𝜓))
32anbi1i 731 . . 3 ((𝑥 ∈ {𝑦𝐴𝜑} ∧ 𝜒) ↔ ((𝑥𝐴𝜓) ∧ 𝜒))
4 anass 682 . . 3 (((𝑥𝐴𝜓) ∧ 𝜒) ↔ (𝑥𝐴 ∧ (𝜓𝜒)))
53, 4bitri 264 . 2 ((𝑥 ∈ {𝑦𝐴𝜑} ∧ 𝜒) ↔ (𝑥𝐴 ∧ (𝜓𝜒)))
65rexbii2 3068 1 (∃𝑥 ∈ {𝑦𝐴𝜑}𝜒 ↔ ∃𝑥𝐴 (𝜓𝜒))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∈ wcel 2030  ∃wrex 2942  {crab 2945 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-rex 2947  df-rab 2950  df-v 3233 This theorem is referenced by:  wereu2  5140  wdom2d  8526  enfin2i  9181  infm3  11020  pmtrfrn  17924  pgpssslw  18075  ellspd  20189  1stcfb  21296  xkobval  21437  xkococn  21511  imasdsf1olem  22225  rusgrnumwwlks  26941  cvmliftlem15  31406  frpomin  31863  wsuclem  31895  scutun12  32042  poimirlem4  33543  poimirlem26  33565  poimirlem27  33566  rexrabdioph  37675  hbtlem6  38016
 Copyright terms: Public domain W3C validator