![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexr | Structured version Visualization version GIF version |
Description: A standard real is an extended real. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
rexr | ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressxr 10273 | . 2 ⊢ ℝ ⊆ ℝ* | |
2 | 1 | sseli 3738 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2137 ℝcr 10125 ℝ*cxr 10263 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-v 3340 df-un 3718 df-in 3720 df-ss 3727 df-xr 10268 |
This theorem is referenced by: rexri 10287 lenlt 10306 ltpnf 12145 mnflt 12148 xrltnsym 12161 xrlttr 12164 xrre 12191 xrre3 12193 max1 12207 max2 12209 min1 12211 min2 12212 maxle 12213 lemin 12214 maxlt 12215 ltmin 12216 max0sub 12218 qbtwnxr 12222 xralrple 12227 alrple 12228 xltnegi 12238 rexadd 12254 xaddnemnf 12258 xaddnepnf 12259 xaddcom 12262 xnegdi 12269 xpncan 12272 xnpcan 12273 xleadd1a 12274 xleadd1 12276 xltadd1 12277 xltadd2 12278 xsubge0 12282 rexmul 12292 xadddilem 12315 xadddir 12317 xrsupsslem 12328 xrinfmsslem 12329 xrub 12333 supxrun 12337 supxrunb1 12340 supxrunb2 12341 supxrbnd1 12342 supxrbnd2 12343 xrsup0 12344 supxrbnd 12349 infmremnf 12364 elioo4g 12425 elioc2 12427 elico2 12428 elicc2 12429 iccss 12432 iooshf 12443 iooneg 12483 icoshft 12485 difreicc 12495 hashbnd 13315 elicc4abs 14256 icodiamlt 14371 limsupgord 14400 pcadd 15793 ramubcl 15922 lt6abl 18494 xrsmcmn 19969 xrs1mnd 19984 xrs10 19985 xrsdsreval 19991 psmetge0 22316 xmetge0 22348 imasdsf1olem 22377 bl2in 22404 blssps 22428 blss 22429 blcld 22509 icopnfcld 22770 iocmnfcld 22771 bl2ioo 22794 blssioo 22797 xrtgioo 22808 xrsblre 22813 iccntr 22823 icccmplem2 22825 icccmp 22827 reconnlem2 22829 xrge0tsms 22836 icoopnst 22937 iocopnst 22938 ovolfioo 23434 ovolicc2lem1 23483 ovolicc2lem5 23487 voliunlem3 23518 icombl1 23529 icombl 23530 iccvolcl 23533 ovolioo 23534 ioovolcl 23536 uniiccdif 23544 volsup2 23571 mbfimasn 23598 ismbf3d 23618 mbfsup 23628 itg2seq 23706 dvlip2 23955 ply1remlem 24119 abelthlem3 24384 abelth 24392 sincosq2sgn 24448 sincosq3sgn 24449 sinq12ge0 24457 sincos6thpi 24464 sineq0 24470 efif1olem1 24485 efif1olem2 24486 efif1o 24489 eff1o 24492 loglesqrt 24696 basellem1 25004 pntlemo 25493 nmobndi 27937 nmopub2tALT 29075 nmfnleub2 29092 nmopcoadji 29267 rexdiv 29941 xrge0tsmsd 30092 pnfneige0 30304 lmxrge0 30305 hashf2 30453 sxbrsigalem0 30640 omssubadd 30669 orvcgteel 30836 orvclteel 30841 sgnclre 30908 sgnneg 30909 signstfvneq0 30956 ivthALT 32634 icorempt2 33508 icoreunrn 33516 iooelexlt 33519 relowlssretop 33520 relowlpssretop 33521 poimir 33753 mblfinlem2 33758 iblabsnclem 33784 bddiblnc 33791 ftc1anclem1 33796 ftc1anclem6 33801 areacirclem5 33815 areacirc 33816 blbnd 33897 iocmbl 38298 supxrre3 40037 supxrgere 40045 infrpge 40063 infxrunb2 40080 infxrbnd2 40081 infleinflem2 40083 xrralrecnnle 40098 supxrunb3 40119 supminfxr2 40195 xrpnf 40212 ioomidp 40241 limsupre 40374 limsupub 40437 limsuppnflem 40443 limsupre3lem 40465 liminfgord 40487 liminflelimsuplem 40508 limsupgtlem 40510 xlimmnfvlem2 40560 xlimmnfv 40561 xlimpnfvlem2 40564 xlimpnfv 40565 icccncfext 40601 volioc 40689 volico 40701 fourierdlem113 40937 meaiuninclem 41198 meaiuninc3v 41202 icoresmbl 41261 ovolval5lem1 41370 mbfresmf 41452 cnfsmf 41453 incsmf 41455 smfconst 41462 decsmf 41479 smfres 41501 smfco 41513 issmfle2d 41519 bgoldbtbndlem3 42203 |
Copyright terms: Public domain | W3C validator |