![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexpssxrxp | Structured version Visualization version GIF version |
Description: The Cartesian product of standard reals are a subset of the Cartesian product of extended reals. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
rexpssxrxp | ⊢ (ℝ × ℝ) ⊆ (ℝ* × ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressxr 10285 | . 2 ⊢ ℝ ⊆ ℝ* | |
2 | xpss12 5264 | . 2 ⊢ ((ℝ ⊆ ℝ* ∧ ℝ ⊆ ℝ*) → (ℝ × ℝ) ⊆ (ℝ* × ℝ*)) | |
3 | 1, 1, 2 | mp2an 672 | 1 ⊢ (ℝ × ℝ) ⊆ (ℝ* × ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3723 × cxp 5247 ℝcr 10137 ℝ*cxr 10275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-v 3353 df-un 3728 df-in 3730 df-ss 3737 df-opab 4847 df-xp 5255 df-xr 10280 |
This theorem is referenced by: ltrelxr 10301 xrsdsre 22833 ovolfioo 23455 ovolficc 23456 ovolficcss 23457 ovollb 23467 ovolicc2 23510 ovolfs2 23559 uniiccdif 23566 uniioovol 23567 uniiccvol 23568 uniioombllem2 23571 uniioombllem3a 23572 uniioombllem3 23573 uniioombllem4 23574 uniioombllem5 23575 uniioombl 23577 dyadmbllem 23587 opnmbllem 23589 icoreresf 33537 icoreelrn 33546 relowlpssretop 33549 opnmbllem0 33778 mblfinlem1 33779 mblfinlem2 33780 voliooicof 40730 ovolval3 41381 ovolval4lem2 41384 ovolval5lem2 41387 ovolval5lem3 41388 ovnovollem1 41390 ovnovollem2 41391 |
Copyright terms: Public domain | W3C validator |