MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexpen Structured version   Visualization version   GIF version

Theorem rexpen 14901
Description: The real numbers are equinumerous to their own Cartesian product, even though it is not necessarily true that is well-orderable (so we cannot use infxpidm2 8800 directly). (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 16-Jun-2013.)
Assertion
Ref Expression
rexpen (ℝ × ℝ) ≈ ℝ

Proof of Theorem rexpen
StepHypRef Expression
1 rpnnen 14900 . . . . . 6 ℝ ≈ 𝒫 ℕ
2 nnenom 12735 . . . . . . 7 ℕ ≈ ω
3 pwen 8093 . . . . . . 7 (ℕ ≈ ω → 𝒫 ℕ ≈ 𝒫 ω)
42, 3ax-mp 5 . . . . . 6 𝒫 ℕ ≈ 𝒫 ω
51, 4entri 7970 . . . . 5 ℝ ≈ 𝒫 ω
6 omex 8500 . . . . . 6 ω ∈ V
76pw2en 8027 . . . . 5 𝒫 ω ≈ (2𝑜𝑚 ω)
85, 7entri 7970 . . . 4 ℝ ≈ (2𝑜𝑚 ω)
9 xpen 8083 . . . 4 ((ℝ ≈ (2𝑜𝑚 ω) ∧ ℝ ≈ (2𝑜𝑚 ω)) → (ℝ × ℝ) ≈ ((2𝑜𝑚 ω) × (2𝑜𝑚 ω)))
108, 8, 9mp2an 707 . . 3 (ℝ × ℝ) ≈ ((2𝑜𝑚 ω) × (2𝑜𝑚 ω))
11 2onn 7680 . . . . . . . 8 2𝑜 ∈ ω
1211elexi 3203 . . . . . . 7 2𝑜 ∈ V
1312, 12, 6xpmapen 8088 . . . . . 6 ((2𝑜 × 2𝑜) ↑𝑚 ω) ≈ ((2𝑜𝑚 ω) × (2𝑜𝑚 ω))
1413ensymi 7966 . . . . 5 ((2𝑜𝑚 ω) × (2𝑜𝑚 ω)) ≈ ((2𝑜 × 2𝑜) ↑𝑚 ω)
15 ssid 3609 . . . . . . . . . . . . 13 2𝑜 ⊆ 2𝑜
16 ssnnfi 8139 . . . . . . . . . . . . 13 ((2𝑜 ∈ ω ∧ 2𝑜 ⊆ 2𝑜) → 2𝑜 ∈ Fin)
1711, 15, 16mp2an 707 . . . . . . . . . . . 12 2𝑜 ∈ Fin
18 xpfi 8191 . . . . . . . . . . . 12 ((2𝑜 ∈ Fin ∧ 2𝑜 ∈ Fin) → (2𝑜 × 2𝑜) ∈ Fin)
1917, 17, 18mp2an 707 . . . . . . . . . . 11 (2𝑜 × 2𝑜) ∈ Fin
20 isfinite 8509 . . . . . . . . . . 11 ((2𝑜 × 2𝑜) ∈ Fin ↔ (2𝑜 × 2𝑜) ≺ ω)
2119, 20mpbi 220 . . . . . . . . . 10 (2𝑜 × 2𝑜) ≺ ω
226canth2 8073 . . . . . . . . . 10 ω ≺ 𝒫 ω
23 sdomtr 8058 . . . . . . . . . 10 (((2𝑜 × 2𝑜) ≺ ω ∧ ω ≺ 𝒫 ω) → (2𝑜 × 2𝑜) ≺ 𝒫 ω)
2421, 22, 23mp2an 707 . . . . . . . . 9 (2𝑜 × 2𝑜) ≺ 𝒫 ω
25 sdomdom 7943 . . . . . . . . 9 ((2𝑜 × 2𝑜) ≺ 𝒫 ω → (2𝑜 × 2𝑜) ≼ 𝒫 ω)
2624, 25ax-mp 5 . . . . . . . 8 (2𝑜 × 2𝑜) ≼ 𝒫 ω
27 domentr 7975 . . . . . . . 8 (((2𝑜 × 2𝑜) ≼ 𝒫 ω ∧ 𝒫 ω ≈ (2𝑜𝑚 ω)) → (2𝑜 × 2𝑜) ≼ (2𝑜𝑚 ω))
2826, 7, 27mp2an 707 . . . . . . 7 (2𝑜 × 2𝑜) ≼ (2𝑜𝑚 ω)
29 mapdom1 8085 . . . . . . 7 ((2𝑜 × 2𝑜) ≼ (2𝑜𝑚 ω) → ((2𝑜 × 2𝑜) ↑𝑚 ω) ≼ ((2𝑜𝑚 ω) ↑𝑚 ω))
3028, 29ax-mp 5 . . . . . 6 ((2𝑜 × 2𝑜) ↑𝑚 ω) ≼ ((2𝑜𝑚 ω) ↑𝑚 ω)
31 mapxpen 8086 . . . . . . . 8 ((2𝑜 ∈ ω ∧ ω ∈ V ∧ ω ∈ V) → ((2𝑜𝑚 ω) ↑𝑚 ω) ≈ (2𝑜𝑚 (ω × ω)))
3211, 6, 6, 31mp3an 1421 . . . . . . 7 ((2𝑜𝑚 ω) ↑𝑚 ω) ≈ (2𝑜𝑚 (ω × ω))
3312enref 7948 . . . . . . . 8 2𝑜 ≈ 2𝑜
34 xpomen 8798 . . . . . . . 8 (ω × ω) ≈ ω
35 mapen 8084 . . . . . . . 8 ((2𝑜 ≈ 2𝑜 ∧ (ω × ω) ≈ ω) → (2𝑜𝑚 (ω × ω)) ≈ (2𝑜𝑚 ω))
3633, 34, 35mp2an 707 . . . . . . 7 (2𝑜𝑚 (ω × ω)) ≈ (2𝑜𝑚 ω)
3732, 36entri 7970 . . . . . 6 ((2𝑜𝑚 ω) ↑𝑚 ω) ≈ (2𝑜𝑚 ω)
38 domentr 7975 . . . . . 6 ((((2𝑜 × 2𝑜) ↑𝑚 ω) ≼ ((2𝑜𝑚 ω) ↑𝑚 ω) ∧ ((2𝑜𝑚 ω) ↑𝑚 ω) ≈ (2𝑜𝑚 ω)) → ((2𝑜 × 2𝑜) ↑𝑚 ω) ≼ (2𝑜𝑚 ω))
3930, 37, 38mp2an 707 . . . . 5 ((2𝑜 × 2𝑜) ↑𝑚 ω) ≼ (2𝑜𝑚 ω)
40 endomtr 7974 . . . . 5 ((((2𝑜𝑚 ω) × (2𝑜𝑚 ω)) ≈ ((2𝑜 × 2𝑜) ↑𝑚 ω) ∧ ((2𝑜 × 2𝑜) ↑𝑚 ω) ≼ (2𝑜𝑚 ω)) → ((2𝑜𝑚 ω) × (2𝑜𝑚 ω)) ≼ (2𝑜𝑚 ω))
4114, 39, 40mp2an 707 . . . 4 ((2𝑜𝑚 ω) × (2𝑜𝑚 ω)) ≼ (2𝑜𝑚 ω)
42 ovex 6643 . . . . . . 7 (2𝑜𝑚 ω) ∈ V
43 0ex 4760 . . . . . . 7 ∅ ∈ V
4442, 43xpsnen 8004 . . . . . 6 ((2𝑜𝑚 ω) × {∅}) ≈ (2𝑜𝑚 ω)
4544ensymi 7966 . . . . 5 (2𝑜𝑚 ω) ≈ ((2𝑜𝑚 ω) × {∅})
46 snfi 7998 . . . . . . . . . 10 {∅} ∈ Fin
47 isfinite 8509 . . . . . . . . . 10 ({∅} ∈ Fin ↔ {∅} ≺ ω)
4846, 47mpbi 220 . . . . . . . . 9 {∅} ≺ ω
49 sdomtr 8058 . . . . . . . . 9 (({∅} ≺ ω ∧ ω ≺ 𝒫 ω) → {∅} ≺ 𝒫 ω)
5048, 22, 49mp2an 707 . . . . . . . 8 {∅} ≺ 𝒫 ω
51 sdomdom 7943 . . . . . . . 8 ({∅} ≺ 𝒫 ω → {∅} ≼ 𝒫 ω)
5250, 51ax-mp 5 . . . . . . 7 {∅} ≼ 𝒫 ω
53 domentr 7975 . . . . . . 7 (({∅} ≼ 𝒫 ω ∧ 𝒫 ω ≈ (2𝑜𝑚 ω)) → {∅} ≼ (2𝑜𝑚 ω))
5452, 7, 53mp2an 707 . . . . . 6 {∅} ≼ (2𝑜𝑚 ω)
5542xpdom2 8015 . . . . . 6 ({∅} ≼ (2𝑜𝑚 ω) → ((2𝑜𝑚 ω) × {∅}) ≼ ((2𝑜𝑚 ω) × (2𝑜𝑚 ω)))
5654, 55ax-mp 5 . . . . 5 ((2𝑜𝑚 ω) × {∅}) ≼ ((2𝑜𝑚 ω) × (2𝑜𝑚 ω))
57 endomtr 7974 . . . . 5 (((2𝑜𝑚 ω) ≈ ((2𝑜𝑚 ω) × {∅}) ∧ ((2𝑜𝑚 ω) × {∅}) ≼ ((2𝑜𝑚 ω) × (2𝑜𝑚 ω))) → (2𝑜𝑚 ω) ≼ ((2𝑜𝑚 ω) × (2𝑜𝑚 ω)))
5845, 56, 57mp2an 707 . . . 4 (2𝑜𝑚 ω) ≼ ((2𝑜𝑚 ω) × (2𝑜𝑚 ω))
59 sbth 8040 . . . 4 ((((2𝑜𝑚 ω) × (2𝑜𝑚 ω)) ≼ (2𝑜𝑚 ω) ∧ (2𝑜𝑚 ω) ≼ ((2𝑜𝑚 ω) × (2𝑜𝑚 ω))) → ((2𝑜𝑚 ω) × (2𝑜𝑚 ω)) ≈ (2𝑜𝑚 ω))
6041, 58, 59mp2an 707 . . 3 ((2𝑜𝑚 ω) × (2𝑜𝑚 ω)) ≈ (2𝑜𝑚 ω)
6110, 60entri 7970 . 2 (ℝ × ℝ) ≈ (2𝑜𝑚 ω)
6261, 8entr4i 7973 1 (ℝ × ℝ) ≈ ℝ
Colors of variables: wff setvar class
Syntax hints:  wcel 1987  Vcvv 3190  wss 3560  c0 3897  𝒫 cpw 4136  {csn 4155   class class class wbr 4623   × cxp 5082  (class class class)co 6615  ωcom 7027  2𝑜c2o 7514  𝑚 cmap 7817  cen 7912  cdom 7913  csdm 7914  Fincfn 7915  cr 9895  cn 10980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-se 5044  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-isom 5866  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-2o 7521  df-oadd 7524  df-omul 7525  df-er 7702  df-map 7819  df-pm 7820  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-sup 8308  df-inf 8309  df-oi 8375  df-card 8725  df-acn 8728  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-n0 11253  df-z 11338  df-uz 11648  df-q 11749  df-rp 11793  df-ico 12139  df-icc 12140  df-fz 12285  df-fzo 12423  df-fl 12549  df-seq 12758  df-exp 12817  df-hash 13074  df-cj 13789  df-re 13790  df-im 13791  df-sqrt 13925  df-abs 13926  df-limsup 14152  df-clim 14169  df-rlim 14170  df-sum 14367
This theorem is referenced by:  cpnnen  14902
  Copyright terms: Public domain W3C validator