![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexn0 | Structured version Visualization version GIF version |
Description: Restricted existential quantification implies its restriction is nonempty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007.) |
Ref | Expression |
---|---|
rexn0 | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝐴 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0i 3954 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝐴 ≠ ∅) | |
2 | 1 | a1d 25 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝐴 ≠ ∅)) |
3 | 2 | rexlimiv 3056 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝐴 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2030 ≠ wne 2823 ∃wrex 2942 ∅c0 3948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-v 3233 df-dif 3610 df-nul 3949 |
This theorem is referenced by: reusv2lem3 4901 eusvobj2 6683 isdrs2 16986 ismnd 17344 slwn0 18076 lbsexg 19212 iunconn 21279 grpon0 27484 filbcmb 33665 isbnd2 33712 rencldnfi 37702 iunconnlem2 39485 stoweidlem14 40549 hoidmvval0 41122 2reu4 41511 |
Copyright terms: Public domain | W3C validator |