![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexlimdvw | Structured version Visualization version GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 18-Jun-2014.) |
Ref | Expression |
---|---|
rexlimdvw.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
rexlimdvw | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimdvw.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
3 | 2 | rexlimdv 3059 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2030 ∃wrex 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ex 1745 df-ral 2946 df-rex 2947 |
This theorem is referenced by: rspcebdv 3345 disjiund 4675 ralxfrd 4909 odi 7704 omeulem1 7707 qsss 7851 findcard3 8244 r1pwss 8685 dfac5lem4 8987 climuni 14327 rlimno1 14428 caurcvg2 14452 sscfn1 16524 gsumval2a 17326 gsumval3 18354 opnnei 20972 dislly 21348 lfinpfin 21375 txcmplem1 21492 ufileu 21770 alexsubALT 21902 metustel 22402 metustfbas 22409 i1faddlem 23505 ulmval 24179 brbtwn 25824 vtxduhgr0nedg 26444 wwlksnredwwlkn0 26859 midwwlks2s3 26917 elwwlks2ons3OLD 26921 clwwlknunOLD 27091 iccllysconn 31358 cvmopnlem 31386 cvmlift2lem10 31420 cvmlift3lem8 31434 sdclem2 33668 heibor1lem 33738 elrfi 37574 eldiophb 37637 dnnumch2 37932 |
Copyright terms: Public domain | W3C validator |