![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reximi2 | Structured version Visualization version GIF version |
Description: Inference quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 8-Nov-2004.) |
Ref | Expression |
---|---|
reximi2.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜓)) |
Ref | Expression |
---|---|
reximi2 | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximi2.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜓)) | |
2 | 1 | eximi 1802 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜓)) |
3 | df-rex 2947 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
4 | df-rex 2947 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝜓 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜓)) | |
5 | 2, 3, 4 | 3imtr4i 281 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∃wex 1744 ∈ wcel 2030 ∃wrex 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 |
This theorem depends on definitions: df-bi 197 df-ex 1745 df-rex 2947 |
This theorem is referenced by: pssnn 8219 btwnz 11517 xrsupexmnf 12173 xrinfmexpnf 12174 xrsupsslem 12175 xrinfmsslem 12176 supxrun 12184 ioo0 12238 resqrex 14035 resqreu 14037 rexuzre 14136 neiptopnei 20984 comppfsc 21383 filssufilg 21762 alexsubALTlem4 21901 lgsquadlem2 25151 nmobndseqi 27762 nmobndseqiALT 27763 pjnmopi 29135 crefdf 30043 dya2iocuni 30473 ballotlemfc0 30682 ballotlemfcc 30683 ballotlemsup 30694 poimirlem32 33571 sstotbnd3 33705 lsateln0 34600 pclcmpatN 35505 aaitgo 38049 stoweidlem14 40549 stoweidlem57 40592 elaa2 40769 |
Copyright terms: Public domain | W3C validator |